We present results of experimental and theoretical investigations of electron
transport through stub-shaped waveguides or electron stub tuners (ESTs) in the
ballistic regime. Measurements of the conductance G as a function of voltages,
applied to different gates V_i (i=bottom, top, and side) of the device, show
oscillations in the region of the first quantized plateau which we attribute to
reflection resonances. The oscillations are rather regular and almost periodic
when the height h of the EST cavity is small compared to its width. When h is
increased, the oscillations become less regular and broad depressions in G
appear. A theoretical analysis, which accounts for the electrostatic potential
formed by the gates in the cavity region, and a numerical computation of the
transmission probabilities successfully explains the experimental observations.
An important finding for real devices, defined by surface Schottky gates, is
that the resonance nima result from size quantization along the transport
direction of the EST.Comment: Text 20 pages in Latex/Revtex format, 11 Postscript figures. Phys.
Rev. B,in pres