11 research outputs found

    Effect of cadence selection on peak power and time of power production in elite BMX riders; a laboratory based study.

    Get PDF
    The aims of this study were to analyse the optimal cadence for peak power production and time to peak power in bicycle motocross (BMX) riders. Six male elite BMX riders volunteered for the study. Each rider completed 3 maximal sprints at a cadence of 80, 100, 120 and 140revs·min-1 on a laboratory Schoberer Rad Messtechnik (SRM) cycle ergometer in isokinetic mode. The riders’ mean values for peak power and time of power production in all three tests were recorded. The BMX riders produced peak power (1105±139W) at 100revs·min-1 with lower peak power produced at 80revs:min-1 (1060±69W, (F(2,15)=3.162; p=.266; η2 =0.960), 120revs·min-1 (1077±141W, (F(2,15)=4.348; p=.203; η2 =0.970) and 140revs·min-1 (1046±175W, (F(2,15)=12.350; p=0.077; η2 =0.989). The shortest time to power production was attained at 120revs·min-1 in 2.5±1.07s. Whilst a cadence of 80revs:min-1 (3.5±0.8s, (F(2,15)=2.667; p=.284; η2 =0.800) 100revs:min-1 (3.00±1.13s, (F(2,15)=24.832; p=.039; η2 =0.974) and 140revs:min-1 (3.50±0.88s, (F(2,15)=44.167; p=.006; η2 =0.967)) all recorded a longer time to peak power production. The results indicate that the optimal cadence for producing peak power output and reducing the time to peak power output are attained at comparatively low cadences for sprint cycling events. These findings could potentially inform strength and conditioning training to maximise dynamic force production and enable coaches to select optimal gear ratios

    Variability in Laboratory vs. Field Testing of Peak Power, Torque, and Time of Peak Power Production Among Elite Bicycle Motocross Cyclists

    Get PDF
    The aim of this study was to ascertain the variation in elite male bicycle motocross (BMX) cyclists' peak power, torque, and time of power production during laboratory and field-based testing. Eight elite male BMX riders volunteered for the study, and each rider completed 3 maximal sprints using both a Schoberer Rad Messtechnik (SRM) ergometer in the laboratory and a portable SRM power meter on an Olympic standard indoor BMX track. The results revealed a significantly higher peak power (p <= 0.001, 34 ± 9%) and reduced time of power production (p <= 0.001, 105 ± 24%) in the field tests when compared with laboratory-derived values. Torque was also reported to be lower in the laboratory tests but not to an accepted level of significance (p = 0.182, 6 ± 8%). These results suggest that field-based testing may be a more effective and accurate measure of a BMX rider's peak power, torque, and time of power production

    Optimizing the breakaway position in cycle races using mathematical modelling

    Get PDF
    In long-distance competitive cycling, efforts to mitigate the effects of air resistance can significantly reduce the energy expended by the cyclist. A common method to achieve such reductions is for the riders to cycle in one large group, known as the peloton. However, to win a race a cyclist must break away from the peloton, losing the advantage of drag reduction and riding solo to cross the finish line ahead of the other riders. If the rider breaks away too soon then fatigue effects due to the extra pedal force required to overcome the additional drag will result in them being caught by the peloton. On the other hand, if the rider breaks away too late then they will not maximize their time advantage over the main field. In this paper, we derive a mathematical model for the motion of the peloton and breakaway rider and use asymptotic analysis techniques to derive analytical solutions for their behaviour. The results are used to predict the optimum time for a rider to break away that maximizes the finish time ahead of the peloton for a given course profile and rider statistics
    corecore