218 research outputs found

    A study to improve the mechanical properties of silicon carbide ribbon fibers

    Get PDF
    Preliminary deposition studies of SiC ribbon on a carbon ribbon substrate showed that the dominant strength limiting flaws were at the substrate surface. Procedures for making the carbon ribbon substrate from polyimide film were improved, providing lengths up to 450 meters (1,500 ft.) of flat carbon ribbon substrate 1,900 microns (75 mils) wide by 25 microns (1 mil) thick. The flaws on the carbon ribbon were smaller and less frequent than on carbon ribbon used earlier. SiC ribbon made using the improved substrate, including a layer of pyrolytic graphite to reduce further the severity of substrate surface flaws, showed strength levels up to the 2,068 MPa (300 Ksi) target of the program, with average strength levels over 1,700 MPa (250 Ksi) with coefficient of variation as low as 10% for some runs

    Using Microbial Community Interactions within Plant Microbiomes to Advance an Evergreen Agricultural Revolution

    Get PDF
    Innovative plant breeding and technology transfer fostered the Green Revolution (GR), which transformed agriculture worldwide by increasing grain yields in developing countries. The GR temporarily alleviated world hunger, but also reduced biodiversity, nutrient cycling, and carbon (C) sequestration that agricultural lands can provide. Meanwhile, economic disparity and food insecurity within and among countries continues. Subsequent agricultural advances, focused on objectives such as increasing crop yields or reducing the risk of a specific pest, have failed to meet food demands at the local scale or to restore lost ecosystem services. An increasing human population, climate change, growing per capita food and energy demands, and reduced ecosystem potential to provide agriculturally relevant services have created an unrelenting need for improved crop production practices. Meeting this need in a sustainable fashion will require interdisciplinary approaches that integrate plant and microbial ecology with efforts to advance crop production while mitigating effects of a changing climate. Metagenomic advances are revealing microbial dynamics that can simultaneously improve crop production and soil restoration while enhancing crop resistance to environmental change. Restoring microbial diversity to contemporary agroecosystems could establish ecosystem services while reducing production costs for agricultural producers. Our framework for examining plant-microbial interactions at multiple scales, modeling outcomes to broadly explore potential impacts, and interacting with extension and training networks to transfer microbial based agricultural technologies across socioeconomic scales, offers an integrated strategy for advancing agroecosystem sustainability while minimizing potential for the kind of negative ecological and socioeconomic feedbacks that have resulted from many widely adopted agricultural technologies

    Structural Probe of a Glass Forming Liquid: Generalized Compressibility

    Full text link
    We introduce a new quantity to probe the glass transition. This quantity is a linear generalized compressibility which depends solely on the positions of the particles. We have performed a molecular dynamics simulation on a glass forming liquid consisting of a two component mixture of soft spheres in three dimensions. As the temperature is lowered (or as the density is increased), the generalized compressibility drops sharply at the glass transition, with the drop becoming more and more abrupt as the measurement time increases. At our longest measurement times, the drop occurs approximately at the mode coupling temperature TCT_C. The drop in the linear generalized compressibility occurs at the same temperature as the peak in the specific heat. By examining the inherent structure energy as a function of temperature, we find that our results are consistent with the kinetic view of the glass transition in which the system falls out of equilibrium. We find no size dependence and no evidence for a second order phase transition though this does not exclude the possibility of a phase transition below the observed glass transition temperature. We discuss the relation between the linear generalized compressibility and the ordinary isothermal compressibility as well as the static structure factor.Comment: 18 pages, Latex, 26 encapsulated postscript figures, revised paper is shorter, to appear in Phys. Rev.

    Effect of Modification of the NI Artificial Diet on the Biological Fitness Parameters of Mass Reared Western Tarnished Plant Bug, Lygus hesperus

    Get PDF
    The NI artificial diet is the only known successful diet for mass rearing the western tarnished plant bug, Lygus hesperus Knight (Hemiptera: Miridae). This diet has been used for more than a decade. However, because it contains cooked chicken egg, and thus requires laborious preparation (Cohen 2000), this diet is difficult to use. Three modifications (D1, D2, D3) of the NI diet were investigated in hopes of developing a more easily prepared diet that avoids the cooked egg and improves mass fitness parameters of L. hesperus. The modified D3 diet, containing autoclaved chicken egg yolk based component, had the highest egg/cage/day production (13120 ± 812 SE). This was significantly greater than diets D1, containing autoclaved dry chicken egg yolk based component (9027 ± 811 SE), D2, containing autoclaved chicken egg white based component (8311 ± 628 SE), and NI, which contained autoclaved chicken egg yolk + cooked egg diet (7890 ± 761 SE). Significant differences were observed in the weights of all developmental stages except for eggs and first instar nymphs. Higher rates of fertility, hatchability, and low mortality in nymphs during the first instar were also obtained in the modified D3 diet. The results clearly indicated that the D3 diet provided an opportunity to significantly reduce rearing cost by avoiding time-consuming issues with preparation of a cooked egg diet. This should result in an increase in production capacity and a reduction in production costs

    Prospecting for Energy-Rich Renewable Raw Materials: \u3cem\u3eAgave\u3c/em\u3e Leaf Case Study

    Get PDF
    Plant biomass from different species is heterogeneous, and this diversity in composition can be mined to identify materials of value to fuel and chemical industries. Agave produces high yields of energy-rich biomass, and the sugar-rich stem tissue has traditionally been used to make alcoholic beverages. Here, the compositions of Agave americana and Agave tequilana leaves are determined, particularly in the context of bioethanol production. Agave leaf cell wall polysaccharide content was characterized by linkage analysis, non-cellulosic polysaccharides such as pectins were observed by immuno-microscopy, and leaf juice composition was determined by liquid chromatography. Agave leaves are fruit-like--rich in moisture, soluble sugars and pectin. The dry leaf fiber was composed of crystalline cellulose (47-50% w/w) and non-cellulosic polysaccharides (16-22% w/w), and whole leaves were low in lignin (9-13% w/w). Of the dry mass of whole Agave leaves, 85-95% consisted of soluble sugars, cellulose, non-cellulosic polysaccharides, lignin, acetate, protein and minerals. Juice pressed from the Agave leaves accounted for 69% of the fresh weight and was rich in glucose and fructose. Hydrolysis of the fructan oligosaccharides doubled the amount of fermentable fructose in A. tequilana leaf juice samples and the concentration of fermentable hexose sugars was 41-48 g/L. In agricultural production systems such as the tequila making, Agave leaves are discarded as waste. Theoretically, up to 4000 L/ha/yr of bioethanol could be produced from juice extracted from waste Agave leaves. Using standard Saccharomyces cerevisiae strains to ferment Agave juice, we observed ethanol yields that were 66% of the theoretical yields. These data indicate that Agave could rival currently used bioethanol feedstocks, particularly if the fermentation organisms and conditions were adapted to suit Agave leaf composition

    Stage-Specific Effects of Population Density on the Development and Fertility of the Western Tarnished Plant Bug, Lygus hesperus

    Get PDF
    The western tarnished plant bug Lygus hesperus Knight (Heteroptera: Miridae), a major pest of cotton and other key economic crops, was tested for its sensitivity to population density during nymph and adult stages. Nymphs reared to adulthood under increasing densities in laboratory conditions exhibited incremental delays in maturation, heightened mortality rates, and reductions in body mass and various size parameters. In contrast, gonadal activity in both males and females rose with initial density increases. Supplemental nutrients provided to the nymphs failed to offset the negative effects of high density, suggesting that contact frequency, rather than resource partitioning, may be the primary stress. Unlike nymphs, newly eclosed adults exposed to increasing population densities did not suffer negative physiological effects; body mass, mortality rates and patterns of ovipositional activity were unchanged. Collectively, these results indicate that population density can dramatically influence Lygus development, but the specific effects are stage-dependent

    Evidence for structural and electronic instabilities at intermediate temperatures in κ\kappa-(BEDT-TTF)2_{2}X for X=Cu[N(CN)2_{2}]Cl, Cu[N(CN)2_{2}]Br and Cu(NCS)2_{2}: Implications for the phase diagram of these quasi-2D organic superconductors

    Full text link
    We present high-resolution measurements of the coefficient of thermal expansion α(T)=lnl(T)/T\alpha (T)=\partial \ln l(T)/\partial T of the quasi-twodimensional (quasi-2D) salts κ\kappa-(BEDT-TTF)2_2X with X = Cu(NCS)2_2, Cu[N(CN)2_2]Br and Cu[N(CN)2_2]Cl. At intermediate temperatures (B), distinct anomalies reminiscent of second-order phase transitions have been found at T=38T^\ast = 38 K and 45 K for the superconducting X = Cu(NCS)2_2 and Cu[N(CN)2_2]Br salts, respectively. Most interestingly, we find that the signs of the uniaxial pressure coefficients of TT^\ast are strictly anticorrelated with those of TcT_c. We propose that TT^\ast marks the transition to a spin-density-wave (SDW) state forming on minor, quasi-1D parts of the Fermi surface. Our results are compatible with two competing order parameters that form on disjunct portions of the Fermi surface. At elevated temperatures (C), all compounds show α(T)\alpha (T) anomalies that can be identified with a kinetic, glass-like transition where, below a characteristic temperature TgT_g, disorder in the orientational degrees of freedom of the terminal ethylene groups becomes frozen in. We argue that the degree of disorder increases on going from the X = Cu(NCS)2_2 to Cu[N(CN)2_2]Br and the Cu[N(CN)2_2]Cl salt. Our results provide a natural explanation for the unusual time- and cooling-rate dependencies of the ground-state properties in the hydrogenated and deuterated Cu[N(CN)2_2]Br salts reported in the literature.Comment: 22 pages, 7 figure

    Prospecting for energy-rich renewable raw materials: agave leaf case study

    Get PDF
    Plant biomass from different species is heterogeneous, and this diversity in composition can be mined to identify materials of value to fuel and chemical industries. Agave produces high yields of energy-rich biomass, and the sugar-rich stem tissue has traditionally been used to make alcoholic beverages. Here, the compositions of Agave americana and Agave tequilana leaves are determined, particularly in the context of bioethanol production. Agave leaf cell wall polysaccharide content was characterized by linkage analysis, non-cellulosic polysaccharides such as pectins were observed by immuno-microscopy, and leaf juice composition was determined by liquid chromatography. Agave leaves are fruit-like-rich in moisture, soluble sugars and pectin. The dry leaf fiber was composed of crystalline cellulose (47-50% w/w) and non-cellulosic polysaccharides (16-22% w/w), and whole leaves were low in lignin (9-13% w/w). Of the dry mass of whole Agave leaves, 85-95% consisted of soluble sugars, cellulose, non-cellulosic polysaccharides, lignin, acetate, protein and minerals. Juice pressed from the Agave leaves accounted for 69% of the fresh weight and was rich in glucose and fructose. Hydrolysis of the fructan oligosaccharides doubled the amount of fermentable fructose in A. tequilana leaf juice samples and the concentration of fermentable hexose sugars was 41-48 g/L. In agricultural production systems such as the tequila making, Agave leaves are discarded as waste. Theoretically, up to 4000 L/ha/yr of bioethanol could be produced from juice extracted from waste Agave leaves. Using standard Saccharomyces cerevisiae strains to ferment Agave juice, we observed ethanol yields that were 66% of the theoretical yields. These data indicate that Agave could rival currently used bioethanol feedstocks, particularly if the fermentation organisms and conditions were adapted to suit Agave leaf composition.Kendall R. Corbin, Caitlin S. Byrt, Stefan Bauer, Seth DeBolt, Don Chambers, Joseph A. M. Holtum, Ghazwan Karem, Marilyn Henderson, Jelle Lahnstein, Cherie T. Beahan, Antony Bacic, Geoffrey B. Fincher, Natalie S. Betts, Rachel A. Burto

    Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production

    Get PDF
    Background - Lignin is a highly abundant biopolymer synthesized by plants as a complex component of plant secondary cell walls. Efforts to utilize lignin-based bioproducts are needed. Results - Herein we identify and characterize the composition and pyrolytic deconstruction characteristics of high-lignin feedstocks. Feedstocks displaying the highest levels of lignin were identified as drupe endocarp biomass arising as agricultural waste from horticultural crops. By performing pyrolysis coupled to gas chromatography-mass spectrometry, we characterized lignin-derived deconstruction products from endocarp biomass and compared these with switchgrass. By comparing individual pyrolytic products, we document higher amounts of acetic acid, 1-hydroxy-2-propanone, acetone and furfural in switchgrass compared to endocarp tissue, which is consistent with high holocellulose relative to lignin. By contrast, greater yields of lignin-based pyrolytic products such as phenol, 2-methoxyphenol, 2-methylphenol, 2-methoxy-4-methylphenol and 4-ethyl-2-methoxyphenol arising from drupe endocarp tissue are documented. Conclusions - Differences in product yield, thermal decomposition rates and molecular species distribution among the feedstocks illustrate the potential of high-lignin endocarp feedstocks to generate valuable chemicals by thermochemical deconstruction
    corecore