114 research outputs found

    Anomalously large oxygen-ordering contribution to the thermal expansion of untwinned YBa2Cu3O6.95 single crystals: a glass-like transition near room temperature

    Full text link
    We present high-resolution capacitance dilatometry studies from 5 - 500 K of untwinned YBa2Cu3Ox (Y123) single crystals for x ~ 6.95 and x = 7.0. Large contributions to the thermal expansivities due to O-ordering are found for x ~ 6.95, which disappear below a kinetic glass-like transition near room temperature. The kinetics at this glass transition is governed by an energy barrier of 0.98 +- 0.07 eV, in very good agreement with other O-ordering studies. Using thermodynamic arguments, we show that O-ordering in the Y123 system is particularly sensitive to uniaxial pressure (stress) along the chain axis and that the lack of well-ordered chains in Nd123 and La123 is most likely a consequence of a chemical-pressure effect.Comment: 4 pages, 3 figures, submitted to PR

    Structural Probe of a Glass Forming Liquid: Generalized Compressibility

    Full text link
    We introduce a new quantity to probe the glass transition. This quantity is a linear generalized compressibility which depends solely on the positions of the particles. We have performed a molecular dynamics simulation on a glass forming liquid consisting of a two component mixture of soft spheres in three dimensions. As the temperature is lowered (or as the density is increased), the generalized compressibility drops sharply at the glass transition, with the drop becoming more and more abrupt as the measurement time increases. At our longest measurement times, the drop occurs approximately at the mode coupling temperature TCT_C. The drop in the linear generalized compressibility occurs at the same temperature as the peak in the specific heat. By examining the inherent structure energy as a function of temperature, we find that our results are consistent with the kinetic view of the glass transition in which the system falls out of equilibrium. We find no size dependence and no evidence for a second order phase transition though this does not exclude the possibility of a phase transition below the observed glass transition temperature. We discuss the relation between the linear generalized compressibility and the ordinary isothermal compressibility as well as the static structure factor.Comment: 18 pages, Latex, 26 encapsulated postscript figures, revised paper is shorter, to appear in Phys. Rev.

    Stage-Specific Effects of Population Density on the Development and Fertility of the Western Tarnished Plant Bug, Lygus hesperus

    Get PDF
    The western tarnished plant bug Lygus hesperus Knight (Heteroptera: Miridae), a major pest of cotton and other key economic crops, was tested for its sensitivity to population density during nymph and adult stages. Nymphs reared to adulthood under increasing densities in laboratory conditions exhibited incremental delays in maturation, heightened mortality rates, and reductions in body mass and various size parameters. In contrast, gonadal activity in both males and females rose with initial density increases. Supplemental nutrients provided to the nymphs failed to offset the negative effects of high density, suggesting that contact frequency, rather than resource partitioning, may be the primary stress. Unlike nymphs, newly eclosed adults exposed to increasing population densities did not suffer negative physiological effects; body mass, mortality rates and patterns of ovipositional activity were unchanged. Collectively, these results indicate that population density can dramatically influence Lygus development, but the specific effects are stage-dependent

    Prospecting for energy-rich renewable raw materials: agave leaf case study

    Get PDF
    Plant biomass from different species is heterogeneous, and this diversity in composition can be mined to identify materials of value to fuel and chemical industries. Agave produces high yields of energy-rich biomass, and the sugar-rich stem tissue has traditionally been used to make alcoholic beverages. Here, the compositions of Agave americana and Agave tequilana leaves are determined, particularly in the context of bioethanol production. Agave leaf cell wall polysaccharide content was characterized by linkage analysis, non-cellulosic polysaccharides such as pectins were observed by immuno-microscopy, and leaf juice composition was determined by liquid chromatography. Agave leaves are fruit-like-rich in moisture, soluble sugars and pectin. The dry leaf fiber was composed of crystalline cellulose (47-50% w/w) and non-cellulosic polysaccharides (16-22% w/w), and whole leaves were low in lignin (9-13% w/w). Of the dry mass of whole Agave leaves, 85-95% consisted of soluble sugars, cellulose, non-cellulosic polysaccharides, lignin, acetate, protein and minerals. Juice pressed from the Agave leaves accounted for 69% of the fresh weight and was rich in glucose and fructose. Hydrolysis of the fructan oligosaccharides doubled the amount of fermentable fructose in A. tequilana leaf juice samples and the concentration of fermentable hexose sugars was 41-48 g/L. In agricultural production systems such as the tequila making, Agave leaves are discarded as waste. Theoretically, up to 4000 L/ha/yr of bioethanol could be produced from juice extracted from waste Agave leaves. Using standard Saccharomyces cerevisiae strains to ferment Agave juice, we observed ethanol yields that were 66% of the theoretical yields. These data indicate that Agave could rival currently used bioethanol feedstocks, particularly if the fermentation organisms and conditions were adapted to suit Agave leaf composition.Kendall R. Corbin, Caitlin S. Byrt, Stefan Bauer, Seth DeBolt, Don Chambers, Joseph A. M. Holtum, Ghazwan Karem, Marilyn Henderson, Jelle Lahnstein, Cherie T. Beahan, Antony Bacic, Geoffrey B. Fincher, Natalie S. Betts, Rachel A. Burto

    Solvent accessible surface area approximations for rapid and accurate protein structure prediction

    Get PDF
    The burial of hydrophobic amino acids in the protein core is a driving force in protein folding. The extent to which an amino acid interacts with the solvent and the protein core is naturally proportional to the surface area exposed to these environments. However, an accurate calculation of the solvent-accessible surface area (SASA), a geometric measure of this exposure, is numerically demanding as it is not pair-wise decomposable. Furthermore, it depends on a full-atom representation of the molecule. This manuscript introduces a series of four SASA approximations of increasing computational complexity and accuracy as well as knowledge-based environment free energy potentials based on these SASA approximations. Their ability to distinguish correctly from incorrectly folded protein models is assessed to balance speed and accuracy for protein structure prediction. We find the newly developed “Neighbor Vector” algorithm provides the most optimal balance of accurate yet rapid exposure measures

    Exercise therapy for prevention of falls in people with Parkinson's disease: A protocol for a randomised controlled trial and economic evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>People with Parkinson's disease are twice as likely to be recurrent fallers compared to other older people. As these falls have devastating consequences, there is an urgent need to identify and test innovative interventions with the potential to reduce falls in people with Parkinson's disease. The main objective of this randomised controlled trial is to determine whether fall rates can be reduced in people with Parkinson's disease using exercise targeting three potentially remediable risk factors for falls (reduced balance, reduced leg muscle strength and freezing of gait). In addition we will establish the cost effectiveness of the exercise program from the health provider's perspective.</p> <p>Methods/Design</p> <p>230 community-dwelling participants with idiopathic Parkinson's disease will be recruited. Eligible participants will also have a history of falls or be identified as being at risk of falls on assessment. Participants will be randomly allocated to a usual-care control group or an intervention group which will undertake weight-bearing balance and strengthening exercises and use cueing strategies to address freezing of gait. The intervention group will choose between the home-based or support group-based mode of the program. Participants in both groups will receive standardized falls prevention advice. The primary outcome measure will be fall rates. Participants will record falls and medical interventions in a diary for the duration of the 6-month intervention period. Secondary measures include the Parkinson's Disease Falls Risk Score, maximal leg muscle strength, standing balance, the Short Physical Performance Battery, freezing of gait, health and well being, habitual physical activity and positive and negative affect schedule.</p> <p>Discussion</p> <p>No adequately powered studies have investigated exercise interventions aimed at reducing falls in people with Parkinson's disease. This trial will determine the effectiveness of the exercise intervention in reducing falls and its cost effectiveness. This pragmatic program, if found to be effective, has the potential to be implemented within existing community services.</p> <p>Trial registration</p> <p>The protocol for this study is registered with the Australian New Zealand Clinical Trials Registry (ACTRN12608000303347).</p

    Identification of stable QTLs for vegetative and reproductive traits in the microvine (Vitis vinifera L.) using the 18 K Infinium chip

    Get PDF
    UMR AGAP - équipe DAAV - Diversité, adaptation et amélioration de la vigne[b]Background[/b] [br/]The increasing temperature associated with climate change impacts grapevine phenology and development with critical effects on grape yield and composition. Plant breeding has the potential to deliver new cultivars with stable yield and quality under warmer climate conditions, but this requires the identification of stable genetic determinants. This study tested the potentialities of the microvine to boost genetics in grapevine. A mapping population of 129 microvines derived from Picovine x Ugni Blanc flb, was genotyped with the Illumina® 18 K SNP (Single Nucleotide Polymorphism) chip. Forty-three vegetative and reproductive traits were phenotyped outdoors over four cropping cycles, and a subset of 22 traits over two cropping cycles in growth rooms with two contrasted temperatures, in order to map stable QTLs (Quantitative Trait Loci). [br/][b]Results[/b] [br/]Ten stable QTLs for berry development and quality or leaf area were identified on the parental maps. A new major QTL explaining up to 44 % of total variance of berry weight was identified on chromosome 7 in Ugni Blanc flb, and co-localized with QTLs for seed number (up to 76 % total variance), major berry acids at green lag phase (up to 35 %), and other yield components (up to 25 %). In addition, a minor QTL for leaf area was found on chromosome 4 of the same parent. In contrast, only minor QTLs for berry acidity and leaf area could be found as moderately stable in Picovine. None of the transporters recently identified as mutated in low acidity apples or Cucurbits were included in the several hundreds of candidate genes underlying the above berry QTLs, which could be reduced to a few dozen candidate genes when a priori pertinent biological functions and organ specific expression were considered. [br/][b]Conclusions[/b] [br/]This study combining the use of microvine and a high throughput genotyping technology was innovative for grapevine genetics. It allowed the identification of 10 stable QTLs, including the first berry acidity QTLs reported so far in a Vitis vinifera intra-specific cross. Robustness of a set of QTLs was assessed with respect to temperature variatio

    Calibration and Physics with ARA Station 1: A Unique Askaryan Radio Array Detector

    Full text link
    The Askaryan Radio Array Station 1 (A1), the first among five autonomous stations deployed for the ARA experiment at the South Pole, is a unique ultra-high energy neutrino (UHEN) detector based on the Askaryan effect that uses Antarctic ice as the detector medium. Its 16 radio antennas (distributed across 4 strings, each with 2 Vertically Polarized (VPol), 2 Horizontally Polarized (HPol) receivers), and 2 strings of transmitting antennas (calibration pulsers, CPs), each with 1 VPol and 1 HPol channel, are deployed at depths less than 100 m within the shallow firn zone of the 2.8 km thick South Pole (SP) ice. We apply different methods to calibrate its Ice Ray Sampler second generation (IRS2) chip for timing offset and ADC-to-Voltage conversion factors using a known continuous wave input signal to the digitizer, and achieve a precision of sub-nanoseconds. We achieve better calibration for odd, compared to even samples, and also find that the HPols under-perform relative to the VPol channels. Our timing calibrated data is subsequently used to calibrate the ADC-to-Voltage conversion as well as precise antenna locations, as a precursor to vertex reconstruction. The calibrated data will then be analyzed for UHEN signals in the final step of data compression. The ability of A1 to scan the firn region of SP ice sheet will contribute greatly towards a 5-station analysis and will inform the design of the planned IceCube Gen-2 radio array.Comment: 10 page

    The Microphenotron: a robotic miniaturized plant phenotyping platform with diverse applications in chemical biology

    Get PDF
    Background Chemical genetics provides a powerful alternative to conventional genetics for understanding gene function. However, its application to plants has been limited by the lack of a technology that allows detailed phenotyping of whole-seedling development in the context of a high-throughput chemical screen. We have therefore sought to develop an automated micro-phenotyping platform that would allow both root and shoot development to be monitored under conditions where the phenotypic effects of large numbers of small molecules can be assessed. Results The ‘Microphenotron’ platform uses 96-well microtitre plates to deliver chemical treatments to seedlings of Arabidopsis thaliana L. and is based around four components: (a) the ‘Phytostrip’, a novel seedling growth device that enables chemical treatments to be combined with the automated capture of images of developing roots and shoots; (b) an illuminated robotic platform that uses a commercially available robotic manipulator to capture images of developing shoots and roots; (c) software to control the sequence of robotic movements and integrate these with the image capture process; (d) purpose-made image analysis software for automated extraction of quantitative phenotypic data. Imaging of each plate (representing 80 separate assays) takes 4 min and can easily be performed daily for time-course studies. As currently configured, the Microphenotron has a capacity of 54 microtitre plates in a growth room footprint of 2.1 m², giving a potential throughput of up to 4320 chemical treatments in a typical 10 days experiment. The Microphenotron has been validated by using it to screen a collection of 800 natural compounds for qualitative effects on root development and to perform a quantitative analysis of the effects of a range of concentrations of nitrate and ammonium on seedling development. Conclusions The Microphenotron is an automated screening platform that for the first time is able to combine large numbers of individual chemical treatments with a detailed analysis of whole-seedling development, and particularly root system development. The Microphenotron should provide a powerful new tool for chemical genetics and for wider chemical biology applications, including the development of natural and synthetic chemical products for improved agricultural sustainability

    From Isotropic to Anisotropic Side Chain Representations: Comparison of Three Models for Residue Contact Estimation

    Get PDF
    The criterion to determine residue contact is a fundamental problem in deriving knowledge-based mean-force potential energy calculations for protein structures. A frequently used criterion is to require the side chain center-to-center distance or the -to- atom distance to be within a pre-determined cutoff distance. However, the spatially anisotropic nature of the side chain determines that it is challenging to identify the contact pairs. This study compares three side chain contact models: the Atom Distance criteria (ADC) model, the Isotropic Sphere Side chain (ISS) model and the Anisotropic Ellipsoid Side chain (AES) model using 424 high resolution protein structures in the Protein Data Bank. The results indicate that the ADC model is the most accurate and ISS is the worst. The AES model eliminates about 95% of the incorrectly counted contact-pairs in the ISS model. Algorithm analysis shows that AES model is the most computational intensive while ADC model has moderate computational cost. We derived a dataset of the mis-estimated contact pairs by AES model. The most misjudged pairs are Arg-Glu, Arg-Asp and Arg-Tyr. Such a dataset can be useful for developing the improved AES model by incorporating the pair-specific information for the cutoff distance
    corecore