12 research outputs found

    Development and Application of Automatized Routines for Optical Analysis of Synaptic Activity Evoked by Chemical and Electrical Stimulation

    Get PDF
    The recent development of cellular imaging techniques and the application of genetically encoded sensors of neuronal activity led to significant methodological progress in neurobiological studies. These methods often result in complex and large data sets consisting of image stacks or sets of multichannel fluorescent images. The detection of synapses, visualized by fluorescence labeling, is one major challenge in the analysis of these datasets, due to variations in synapse shape, size, and fluorescence intensity across the images. For their detection, most labs use manual or semi-manual techniques that are time-consuming and error-prone. We developed SynEdgeWs, a MATLAB-based segmentation algorithm that combines the application of an edge filter, morphological operators, and marker-controlled watershed segmentation. SynEdgeWs does not need training data and works with low user intervention. It was superior to methods based on cutoff thresholds and local maximum guided approaches in a realistic set of data. We implemented SynEdgeWs in two automatized routines that allow accurate, direct, and unbiased identification of fluorescently labeled synaptic puncta and their consecutive analysis. SynEval routine enables the analysis of three-channel images, and ImgSegRout routine processes image stacks. We tested the feasibility of ImgSegRout on a realistic live-cell imaging data set from experiments designed to monitor neurotransmitter release using synaptic phluorins. Finally, we applied SynEval to compare synaptic vesicle recycling evoked by electrical field stimulation and chemical depolarization in dissociated cortical cultures. Our data indicate that while the proportion of active synapses does not differ between stimulation modes, significantly more vesicles are mobilized upon chemical depolarization

    Acid Sphingomyelinase Impacts Canonical Transient Receptor Potential Channels 6 (TRPC6) Activity in Primary Neuronal Systems

    Get PDF
    The acid sphingomyelinase (ASM)/ceramide system exhibits a crucial role in the pathology of major depressive disorder (MDD). ASM hydrolyzes the abundant membrane lipid sphingomyelin to ceramide that regulates the clustering of membrane proteins via microdomain and lipid raft organization. Several commonly used antidepressants, such as fluoxetine, rely on the functional inhibition of ASM in terms of their antidepressive pharmacological effects. Transient receptor potential canonical 6 (TRPC6) ion channels are located in the plasma membrane of neurons and serve as receptors for hyperforin, a phytochemical constituent of the antidepressive herbal remedy St. John’s wort. TRPC6 channels are involved in the regulation of neuronal plasticity, which likely contributes to their antidepressant effect. In this work, we investigated the impact of reduced ASM activity on the TRPC6 function in neurons. A lipidomic analysis of cortical brain tissue of ASM deficient mice revealed a decrease in ceramide/sphingomyelin molar ratio and an increase in sphingosine. In neurons with ASM deletion, hyperforin-mediated Ca2+-influx via TRPC6 was decreased. Consequently, downstream activation of nuclear phospho-cAMP response element-binding protein (pCREB) was changed, a transcriptional factor involved in neuronal plasticity. Our study underlines the importance of balanced ASM activity, as well as sphingolipidome composition for optimal TRPC6 function. A better understanding of the interaction of the ASM/ceramide and TRPC6 systems could help to draw conclusions about the pathology of MDD

    CRISPR/Cas9-mediated generation of hESC lines with homozygote and heterozygote p.R331W mutation in CTBP1 to model HADDTS syndrome

    Get PDF
    C-terminal Binding Protein 1 (CTBP1) is a ubiquitously expressed transcriptional co-repressor and membrane trafficking regulator. A recurrent de novo c.991C>T mutation in CTBP1 leads to expression of p.R331W CTBP1 and causes hypotonia, ataxia, developmental delay, and tooth enamel defects syndrome (HADDTS), a rare early onset neurodevelopmental disorder. We generated hESCs lines with heterozygote and homozygote c.991C>T in CTBP1 using CRISPR/Cas9 genome editing and validated them for genetic integrity, off-target mutations, and pluripotency. They will be useful for investigation of HADDTS pathophysiology and for screening for potential therapeutics

    CtBP1-Mediated Membrane Fission Contributes to Effective Recycling of Synaptic Vesicles

    Get PDF
    Compensatory endocytosis of released synaptic vesicles (SVs) relies on coordinated signaling at the lipid-protein interface. Here, we address the synaptic function of C-terminal binding protein 1 (CtBP1), a ubiquitous regulator of gene expression and membrane trafficking in cultured hippocampal neurons. In the absence of CtBP1, synapses form in greater density and show changes in SV distribution and size. The increased basal neurotransmission and enhanced synaptic depression could be attributed to a higher vesicular release probability and a smaller fraction of release-competent SVs, respectively. Rescue experiments with specifically targeted constructs indicate that, while synaptogenesis and release probability are controlled by nuclear CtBP1, the efficient recycling of SVs relies on its synaptic expression. The ability of presynaptic CtBP1 to facilitate compensatory endocytosis depends on its membrane-fission activity and the activation of the lipid-metabolizing enzyme PLD1. Thus, CtBP1 regulates SV recycling by promoting a permissive lipid environment for compensatory endocytosis

    Aβ1-16 controls synaptic vesicle pools at excitatory synapses via cholinergic modulation of synapsin phosphorylation

    Get PDF
    Amyloid beta (Aβ) is linked to the pathology of Alzheimer’s disease (AD). At physiological concentrations, Aβ was proposed to enhance neuroplasticity and memory formation by increasing the neurotransmitter release from presynapse. However, the exact mechanisms underlying this presynaptic effect as well as specific contribution of endogenously occurring Aβ isoforms remain unclear. Here, we demonstrate that Aβ1-42 and Aβ1-16, but not Aβ17-42, increased size of the recycling pool of synaptic vesicles (SV). This presynaptic effect was driven by enhancement of endogenous cholinergic signalling via α7 nicotinic acetylcholine receptors, which led to activation of calcineurin, dephosphorylation of synapsin 1 and consequently resulted in reorganization of functional pools of SV increasing their availability for sustained neurotransmission. Our results identify synapsin 1 as a molecular target of Aβ and reveal an effect of physiological concentrations of Aβ on cholinergic modulation of glutamatergic neurotransmission. These findings provide new mechanistic insights in cholinergic dysfunction observed in AD

    Multifaceted roles of transcriptional regulator CtBP1: from depression to muscle atrophy

    No full text
    Major depressive disorder (MDD) is the most disorienting psychiatric disorder, causing a huge social and economic burden globally. Conventional treatment with classical antidepressants targeting the monoaminergic system have provided very limited efficacy in pacifying depression symptoms. Rapid-acting antidepressant Ketamine (Ket) has emerged as a novel therapeutic agent applicable in MDD and treatment resistant depression, over the recent decade. Antidepressant effects of Ket is attributed to its ability to block Glun2B subunits of NMDARs at inhibitory neurons, leading to bursting of glutamatergic transmission and subsequent AMPAR activation. However, unwanted side-effects and abuse potential of Ket cannot be ignored. Since 2016, numerous reports of antidepressive properties of major Ket metabolite Hydroxynorketamine (HNK) have emerged. Similar to Ket, HNK increased AMPAR activation and successfully mitigated depressive symptoms in rodent models of depression, but in an NMDAR-independent manner. Interestingly, HNK displayed no dissociative side-effects commonly seen with Ket administration, making it a promising candidate in antidepressive research. However, evidences of molecular and cellular signaling cascades important for HNK mediated effects on synaptic function remain ambiguous. Here, using mature cortical cultures, we demonstrate bidirectional and differential regulation of network-activity driven SV recycling upon HNK treatment. Using live antibody-uptake studies, we show that short-term HNK treatment leads to an acute weakening of exo-/endocytic cycle dependent presynaptic activity at both excitatory and inhibitory synapses. This is followed by a surprising delayed increase of the same, specifically in excitatory synapses. This exclusive biphasic effect on presynaptic efficacy involve HNK-mediated regulation of TRP and is dependent on the functional presence α7nAchRs, unlike its parent compound Ket. Using immunocytochemistry and quantitative immunoblotting, we have also shown that HNK induces ERK activation and regulates nuclear activity of its downstream target CREB, which are important in HNK mediated regulation of neuronal plasticity. Further, we reveal that HNK and Ket depict similar temporal regulation of activity-dependent genes like Arc and BDNF, which have been deemed of importance in antidepressant research. Additionally, we show modulation of nuclear translocation of transcriptional co-repressor CtBP1, which in some measure might regulate the temporal expression of HNK induced activity-dependent genes. Altogether, this study reveals converging and diverging effects of HNK and Ket on regulation of SV recycling and cellular signaling cascades, which would be important for future mechanistic understanding and comparison of antidepressant effects elicited by these drugs

    Computational Pipeline for NIRS-EEG Joint Imaging of tDCS-Evoked Cerebral

    Get PDF
    Transcranial direct current stimulation (tDCS) modulates cortical neural activity and hemodynamics. Electrophysiological methods (electroencephalography-EEG) measure neural activity while optical methods (near-infrared spectroscopy-NIRS) measure hemodynamics coupled through neurovascular coupling (NVC). Assessment of NVC requires development of NIRS-EEG joint-imaging sensor montages that are sensitive to the tDCS affected brain areas. In this methods paper, we present a software pipeline incorporating freely available software tools that can be used to target vascular territories with tDCS and develop a NIRS-EEG probe for joint imaging of tDCS-evoked responses. We apply this software pipeline to target primarily the outer convexity of the brain territory (superficial divisions) of the middle cerebral artery (MCA). We then present a computational method based on Empirical Mode Decomposition of NIRS and EEG time series into a set of intrinsic mode functions (IMFs), and then perform a cross-correlation analysis on those IMFs from NIRS and EEG signals to model NVC at the lesional and contralesional hemispheres of an ischemic stroke patient. For the contralesional hemisphere, a strong positive correlation between IMFs of regional cerebral hemoglobin oxygen saturation and the log-transformed mean-power time-series of IMFs for EEG with a lag of about −15 s was found after a cumulative 550 s stimulation of anodal tDCS. It is postulated that system identification, for example using a continuous-time autoregressive model, of this coupling relation under tDCS perturbation may provide spatiotemporal discriminatory features for the identification of ischemia. Furthermore, portable NIRS-EEG joint imaging can be incorporated into brain computer interfaces to monitor tDCS-facilitated neurointervention as well as cortical reorganization

    Bassoon controls synaptic vesicle release via regulation of presynaptic phosphorylation and cAMP

    No full text
    Neuronal presynaptic terminals contain hundreds of neurotransmitter-filled synaptic vesicles (SVs). The morphologically uniform SVs differ in their release competence segregating into functional pools that differentially contribute to neurotransmission. The presynaptic scaffold bassoon is required for neurotransmission, but the underlying molecular mechanisms are unknown. We report that glutamatergic synapses lacking bassoon feature decreased SV release competence and increased resting pool of SVs as assessed by imaging of SV release in cultured neurons. CDK5/calcineurin and cAMP/PKA presynaptic signalling are dysregulated, resulting in an aberrant phosphorylation of their downstream effectors synapsin1 and SNAP25, well-known regulators of SV release competence. An acute pharmacological restoration of physiological CDK5 and cAMP/PKA activity fully normalises the SV pools in neurons lacking bassoon. Finally, we demonstrate that CDK5-dependent regulation of PDE4 activity interacts with cAMP/PKA signalling and thereby controls SV release competence. These data reveal that bassoon organises SV pools in glutamatergic synapses via regulation of presynaptic phosphorylation and cAMP homeostasis and indicate a role of CDK5/PDE4/cAMP axis in the control of neurotransmitter release
    corecore