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Summary (150 words) Compensatory endocytosis of released synaptic vesicles (SVs) relies on 25 

coordinated signaling at the lipid-protein interface. Here, we address the synaptic function of C-26 
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terminal binding protein 1 (CtBP1), a ubiquitous regulator of gene expression and membrane 27 

trafficking, in cultured hippocampal neurons. In the absence of CtBP1 synapses formed in higher 28 

density and showed changes in SV distribution and size. The increased basal neurotransmission 29 

and enhanced synaptic depression could be attributed to a higher vesicular release probability 30 

and a smaller fraction of release-competent SVs, respectively. Rescue experiments with 31 

specifically targeted constructs indicated that while synaptogenesis and release probability were 32 

controlled by nuclear CtBP1, the efficient recycling of SVs relied on its synaptic expression. The 33 

ability of presynaptic CtBP1 to facilitate compensatory endocytosis depended on its membrane 34 

fission activity and the activation of the lipid-metabolizing enzyme PLD1. Thus, CtBP1 regulates 35 

SV recycling by promoting a permissive lipid environment for compensatory endocytosis.  36 

Keywords: (up to 10) 37 

Compensatory endocytosis, CtBP1, Bassoon, PLD1, synaptic vesicle recycling, membrane 38 

fission, short-term plasticity, synaptic vesicle pools, presynapse 39 

Introduction: 40 

C-terminal binding protein 1 (CtBP1) is a ubiquitously expressed dual-function protein that acts as 41 

a transcriptional corepressor in the cell nucleus and as a regulator of membrane fission in the 42 

cytoplasm (Chinnadurai, 2009; Valente et al., 2013). It is expressed in most types of neurons, 43 

where it shows a distinct localization to nuclei and presynapses (Hubler et al., 2012; tom Dieck et 44 

al., 2005). Presynaptic CtBP1 is localized in the vicinity of the active zone via its direct binding to 45 

two large, highly homologous active zone scaffolding proteins: bassoon (Bsn) and piccolo (Pclo) 46 

(Ivanova et al., 2015; tom Dieck et al., 2005). A dynamic synapto-nuclear shuttling of CtBP1, 47 

induced by changes in its affinity to Bsn and regulated by neuronal activity and cellular 48 

NAD/NADH ratio was shown to control the expression of a variety of neuroplasticity-related genes 49 

(Ivanova et al., 2016; Ivanova et al., 2015). While the importance of CtBP1-dependent 50 

transcriptional regulation of neuroplasticity genes emerged from recent studies (Garriga-Canut et 51 

al., 2006; Ivanova et al., 2016; Ivanova et al., 2015), the role of synaptic CtBP1 is still elusive. 52 

Here we hypothesize that in addition to being implicated in the remote control of gene expression, 53 

synaptic CtBP1 might directly contribute to neurotransmitter release and SV recycling. The 54 

involvement of CtBP1 in various membrane fission processes at the Golgi and plasma membrane 55 

in non-neuronal cells is in support of this view (Valente et al., 2013). Although the mechanism of 56 

CtBP1-mediated fission remains controversial, an increasing body of evidence suggests that it 57 

induces formation of vesicular carriers by recruiting and orchestrating numerous enzymes that 58 
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promote local lipid reorganization leading to membrane bending (Valente et al., 2013). This is 59 

mechanistically distinct from the principle of torsional force utilized in dynamin-mediated fission, 60 

most commonly implied in SV recycling (Antonny et al., 2016; Renard et al., 2018). Despite the 61 

well-established role of dynamin in SV fission, recent findings suggest that dynamin-independent 62 

forms of endocytosis might occur at hippocampal synapses (Gan and Watanabe, 2018; Wu et al., 63 

2014). Moreover, a crosstalk and cooperativity between dynamin-mediated fission, actin 64 

cytoskeleton-mediated vesicle reformation and lipid reorganization by lipid-modifying enzymes in 65 

the execution of SV recycling were recently suggested (Puchkov and Haucke, 2013; Soykan et 66 

al., 2017; Wu et al., 2016).  67 

In this study, we investigate the potential role of synaptic CtBP1 in the regulation of SV fusion and 68 

recycling. Using knock down (KD), knock out (KO) and complementation approaches we 69 

demonstrate that while loss of nuclear CtBP1 expression increases synaptogenesis and release 70 

probability of SVs, the depletion of synaptic CtBP1 leads to defects in SV retrieval, accompanied 71 

by an enlargement of the docked synaptic vesicles and pronounced synaptic depression during 72 

sustained neurotransmission. Functional experiments and super-resolution imaging indicate that 73 

synaptic CtBP1 acts at the same membrane domain as dynamin to promote SV recycling. Our 74 

results revealed a crucial requirement for CtBP1-mediated membrane fission and the activity of 75 

Phospholipase D1 (PLD1) in this process. Finally, we show that CtBP1 phosphorylation by the 76 

signaling kinase p21 (RAC1) activated kinase 1 (Pak1) provides a molecular switch controlling its 77 

re-distribution from the active zone protein Bsn to the endocytic effector PLD1, thus fine-tuning its 78 

membrane trafficking activity and potentially linking presynaptic exo- and endocytic processes. 79 

Results: 80 

CtBP1 contributes to synaptic vesicle retrieval and regulates the size of the total recycling 81 

pool 82 

To assess whether the absence of CtBP1 affects synaptic structure and function we used a 83 

previously established RNA-interference approach in cultured hippocampal neurons (Ivanova et 84 

al., 2015). Significant downregulation of CtBP1, but no obvious differences in the morphology and 85 

the expression of pre- and post-synaptic markers or CtBP2, a close homologue of CtBP1, were 86 

observed between controls expressing scrambled shRNA (scr) and CtBP1 knock down 87 

(CtBP1KD) neurons expressing target shRNAs: CtBP1KD944 or CtBP1KD467 (Figure1A,B;, 88 

Figure S1A-D). Likewise, no regulation of synaptic proteins and CtBP2 were observed in 89 

homogenates or P2 fractions obtained from brains of CtBP1 knock out animals (Figure S2A,B). 90 
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To assess SV turnover in the absence of CtBP1 we applied a fluorophore-coupled antibody 91 

recognizing the lumenal domain of the integral SV protein synaptotagmin 1 (Syt1 Ab) to living 92 

neurons. Syt1 Ab binds to its epitope which is transiently accessible upon SV fusion with the 93 

plasma membrane until its internalization during compensatory endocytosis. The fluorescence 94 

intensity of the internalized Syt1 Ab provides an estimate of SV recycling at individual synapses 95 

(Kraszewski et al., 1995; Lazarevic et al., 2011). The Syt1 Ab uptake driven by endogenous 96 

activity (network activity-driven release) was reduced by about 50% in CtBP1KD neurons as 97 

compared to controls (30 min incubation; Figure 1C,D). To address the potential contribution of 98 

an increased neuronal network activity to this phenotype and isolate presynaptic effects, we also 99 

measured the spontaneous (i.e. action potential-independent) SV recycling within 30 min in the 100 

presence of TTX and the pool of all fusion-competent vesicles (total recycling pool, TRP) upon 101 

brief depolarization with 50 mM KCl. In both conditions Syt1 Ab uptake was strongly reduced 102 

(~50%) in CtBP1KD (Figure 1C), indicating an impairment in both evoked and spontaneous SV 103 

recycling at CtBP1-deficient synapses. 104 

To monitor SV recycling by an alternative approach we expressed scr and CtBP1KD944 and 105 

CtBP1KD467 from a bicistronic vector together with ratio:sypHy (sypHy) (Figure 1E). SypHy is an 106 

indicator composed of the SV protein synaptophysin 1, fused to pH-sensitive GFP in one of the 107 

luminal domains and tdimer 2 in the cytoplasmic domain which allows its visualization prior to 108 

stimulation (Granseth et al., 2006; Rose et al., 2013). The fluorescence of sypHy increases upon 109 

SV exocytosis and decays following SV endocytosis and re-acidification. To determine the sizes 110 

of the readily releasable pool (RRP) and the recycling pool (RP) we utilized bafilomycin A1, a 111 

blocker of the vesicular proton pump that prevents the re-acidification of endocytosed SVs and 112 

thus the decline of sypHy fluorescence (Burrone et al., 2006). Exocytosis of the SVs from RRP 113 

and RP was evoked by the sequential delivery of 40 and 200 action potentials (AP) at 20 Hz 114 

(Figure 1E-G). In CtBP1KD neurons around 14% of the sypHy positive SVs fused upon 115 

stimulation with 40 AP at 20 Hz (i.e. RRP), which was comparable to control neurons. The 116 

delivery of additional 200 AP triggered exocytosis of ~50% of all sypHy-labeled SVs in controls, 117 

but only ~30% in CtBP1KD neurons, indicating a role of CtBP1 in the control of TRP (comprising 118 

RRP and RP). Alkalization with ammonium chloride, which de-quenches all sypHy-positive SVs, 119 

revealed no differences in its expression between CtBP1KD and control neurons. (Figure 1E-G) 120 

An analogous analysis performed in cultured neurons isolated from constitutive Ctbp1 KO mice 121 

recapitulated the results of the KD approach and confirmed the significant reduction of TRP in 122 

CtBP1-deficient synapses (Figure S2C-E). 123 
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To assess potential changes in the kinetics of SV exo-endocytosis in the absence of CtBP1, we 124 

monitored sypHy responses evoked by a train of 200 AP at 5, 20 or 40 Hz in neurons expressing 125 

CtBP1KD944, CtBP1KD467 or scrambled shRNA (Figure 1H-K). Several stimulation rates were 126 

tested since distinct molecular mechanisms have been proposed to mediate SV retrieval at 127 

different stimulation frequencies (Cousin, 2017; Kononenko and Haucke, 2015; Soykan et al., 128 

2017). Whereas the time course of exocytosis was indistinguishable between CtBP1KD and 129 

control groups, the sypHy fluorescence decay was significantly slower in CtBP1KD neurons at all 130 

frequencies tested (Figure 1I-K) suggesting a role of CtBP1 in SV endocytosis. Analogous 131 

experiments in cultured neurons from constitutive Ctbp1 KO mice confirmed this conclusion 132 

(Figure S2G). Taken together, these results suggest that CtBP1 contributes to SV retrieval at a 133 

broad range of neuronal firing frequencies and is specifically required for maintaining the size of 134 

TRP during sustained neuronal activity. 135 

Deletion of CtBP1 induces changes in SV size and distribution  136 

Next, we performed an ultrastructural analysis of small glutamatergic spine synapses in 4-5 137 

weeks old cultured hippocampal slices obtained from Ctbp1 KO mice and their wild-type (WT) 138 

siblings. A combination of rapid cryo-fixation, automated freeze substitution, and 3D-electron 139 

tomographic analysis was designed to accurately reveal vesicular organization at presynaptic 140 

active zones (AZ) with nanometer precision, while circumventing the introduction of morphological 141 

artefacts associated with conventional electron microscopy preparation methods requiring 142 

dehydration of the tissue at room temperature (Korogod et al., 2015; Murk et al., 2003). An 143 

analysis of gross synaptic morphology and the number of SVs in individual presynaptic 144 

glutamatergic terminals revealed no differences between Ctbp1 KO and WT synaptic profiles 145 

(Figure 2A G). Electron tomographic analysis, however, revealed changes in the distribution of 146 

SVs in KO versus WT synapses (Figure 2H-K). The KO synaptic profiles showed a significant 147 

increase in the number of membrane-proximal SVs (within 0-5, 0-40, 50-100 and 0-100 nm of the 148 

AZ, Figure 2L, P and Table 1). It is important to note that no statistically significant differences in 149 

the number of vesicles within 0-2nm of the AZ were observed (Figure 2M), which is the 150 

morphological correlate of RRP. Analyses of individual SVs revealed a small, but significant 151 

increase in the diameter of docked SVs (Figure 2O), however no change in SV size was seen 152 

when comparing all synaptic vesicles within 0-200 nm (Table1). Altogether, these data suggest 153 

that loss of CtBP1 does not affect the overall number of SVs in the presynaptic terminals, but 154 

triggers their redistribution from membrane-distal to membrane-proximal areas. They also indicate 155 

that CtBP1 regulates the size uniformity of docked SVs. 156 
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Distinct roles of nuclear and synaptic CtBP1 in neurotransmission 157 

Since we observed changes in the diameter of docked SVs and the size of TRP we next 158 

determined the effect of CtBP1 depletion on neurotransmission. We first compared the AP-159 

evoked excitatory postsynaptic currents (EPSCs) in cultures of autaptic hippocampal neurons 160 

transduced with CtBP1KD944 shRNA or scrambled shRNA as a control. Unexpectedly, 161 

CtBP1KD944 neurons exhibited greater amplitudes of EPSC compared to controls (Figure 3A). 162 

To examine whether the increase in EPSC amplitude reflected an increase in the amount of 163 

glutamate loaded into SVs or changes in postsynaptic receptors we analyzed mEPSCs, which 164

represent single fusion events. Neither the amplitudes nor the charges of mEPSCs were affected 165 

by CtBP1-depletion indicating that the observed increase in EPSC amplitude cannot be attributed 166 

to any major changes in vesicular neurotransmitter content or postsynaptic properties (Figure 167 

3B,C, Table 2). In support of the latter conclusion, quantitative live immunolabeling of autaptic 168 

neurons with an antibody recognizing the extracellular epitope of GluAs did not uncover any 169 

significant differences in the surface expression of AMPA receptors between the groups (Figure 170 

3E,F). The mEPSC frequency was not significantly altered in CtBP1944KD neurons (Figure 3D). 171 

However, the number of morphological synapses assessed as a number of co-localizing 172 

synapsin-GluA puncta in CtBP1KD944 neurons was slightly higher suggesting increased 173 

synaptogenesis in the absence of CtBP1 (Figure 3E,G). The increased synapse number might 174 

contribute, at least in part, to the increase of EPSC amplitude observed in these neurons.  175 

Next we measured postsynaptic current evoked by application of hypertonic sucrose, leading to 176 

the release of all docked SVs (RRP) (Rosenmund and Stevens, 1996). We detected unchanged 177 

sucrose-evoked currents (Figure 3H,I), which is in line with unchanged RRP measured by sypHy 178 

imaging (Figure 1E-G) and with the unchanged number of morphologically docked SVs (Figure 179 

2M). The unchanged total RRP charge, but significantly higher EPSC charge evoked by an 180 

injection of a single AP implies an increased mean vesicular release probability (Pvr, Figure 3J). 181 

Increased Pvr is predictive of an increased synaptic transmission upon isolated stimuli but leads 182 

to an enhanced short-term depression upon repeated stimulation. To explore this possibility, we 183 

recorded synaptic responses induced by a 25 ms spaced pair of APs (Figure 3K). In line with the 184 

elevated Pvr, the paired pulse ratio (i.e. the ratio of the peak amplitude of the second to the first 185 

evoked EPSC; PPR), was significantly decreased in CtBP1944KD neurons, confirming a higher 186 

degree of synaptic depression. We also analyzed the depression of neurotransmission during 187 

sustained neuronal activity by recording the EPSCs evoked by a train of 50 stimuli at 10 Hz 188 

(Figure 3L). At this frequency only minor depression of EPSC amplitudes was evident in controls 189 
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(scr), while a pronounced rundown of neurotransmission was measured upon depletion of CtBP1 190 

(CtBP1KD944), which is in line with the high initial Pvr and increased PPR measured in 191 

CtBP1KD944 neurons. Thus, depletion of CtBP1 promotes synaptogenesis and elevates Pvr 192 

resulting in increased evoked neurotransmission and contributing to the strongly enhanced short-193 

term depression. 194 

We have previously shown that nuclear CtBP1 acts as a transcriptional corepressor and regulates 195 

the expression of plasticity-related genes which might affect synaptogenesis and 196 

neurotransmission (Ivanova et al., 2015). To discriminate between the effects of nuclear and 197

synaptic CtBP1 on synaptic transmission, we expressed CtBP1944KD together with RNAi-198 

resistant variants of CtBP1 that were sorted predominantly to the synapses (EGFP-CtBP1) or 199 

only to the nucleus (YFP-CtBP2(NLS)-CtBP1). In EGFP-CtBP1, the N-terminal fusion of EGFP 200 

interferes with its nuclear localization, while it leaves the synaptic targeting unaffected (Figure 201 

S3A) (Ivanova et al., 2015; Verger et al., 2006). The chimeric protein YFP-CtBP2(NLS)-CtBP1 202 

which bears the NLS signal of CtBP2, the paralogue of CtBP1 in vertebrates, fused to almost full 203 

length CtBP1, showed a restricted nuclear localization (Figure S3A) (Verger et al., 2006). While 204 

expression of synaptic EGFP-CtBP1 on a KD background led to a further increase of EPSC 205 

amplitude, expression of nuclear YFP-CtBP2(NLS)-CtBP1 fully rescued the EPSC amplitude 206 

(Figure 3A). These data indicate that the increased size of the evoked response in CtBP1KD944 207 

neurons is a result of the depletion of the nuclear rather than the synaptic pool of CtBP1. 208 

Similarly, the increased number of morphological synapses as well as Pvr and PPR were 209 

substantially normalized upon expression of nuclear YFP-CtBP2(NLS)-CtBP1, indicating that 210 

depletion of nuclear CtBP1 leads to increased synaptogenesis and elevated Pvr (Figure 3G,J,K). 211 

Expression of YFP-CtBP2(NLS)-CtBP1 also normalized the altered expression of the immediate 212 

early gene Arc and neurotrophin BDNF in CtBP1KD944 neurons (Figure S3B,C), suggesting a 213 

link between CtBP1-controlled gene expression and the regulation of synaptic efficacy. We 214 

observed an intermediate increase in Pvr and PPR upon expression of synaptic EGFP-CtBP1 215 

(Figure 3G,J,K), which further supports the notion that nuclear and not synaptic CtBP1 controls 216 

synapse formation and/or maintenance and Pvr. The expression of EGFP-CtBP1 also led to an 217 

increase in mEPSC frequency, which might be a consequence of the concomitant strong 218 

elevation in synapse number and Pvr (Figure 3D,J,K).  219 

To our surprise, the expression of the nuclear construct YFP-CtBP2(NLS)-CtBP1 in CtBP1KD944 220 

neurons that normalized the evoked neurotransmission and significantly decreased Pvr assessed 221 

upon single or paired-pulse stimulation (Figure 3A,J,K), did not revert the strikingly elevated 222 
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depression during the train of 50 stimuli at 10Hz (Figure 3L). In contrast, expression of synaptic 223 

EGFP-CtBP1 in CtBP1KD944, which further enhanced the evoked neurotransmission and left the 224 

increased Pvr largely unaffected, increased the steady state response to 10Hz stimulation by 225 

about 7% (of initial response) compared to CtBP1KD944 (Figure 3L). This is comparable with 226 

data obtained at calyx of held, where compete block of endocytosis decreased steady state 227 

response by 10% (Hosoi et al., 2009). Taken together, the complementation experiments 228 

revealed that nuclear CtBP1 has an inhibitory effect on basal neurotransmission due to its 229 

negative effect on synapse number and SV fusion competency. Interestingly, the nuclear 230 

expression of CtBP1 (YFP-CtBP2(NLS)-CtBP1) left the enhanced depression of 231 

neurotransmission during repetitive stimulation unaffected, while expression of synaptic EGFP-232 

CtBP1 ameliorated the effect of CtBP1 depletion. Since, the synaptic rundown during repetitive 233 

stimulation is determined not only by the Pvr, but also by the size and refill capacity of the total 234 

recycling pool of SVs, we next addressed the involvement of synaptic and nuclear CtBP1 in SV 235 

retrieval in the following imaging experiments. 236 

Synaptic CtBP1 is required for normal SV recycling and short-term plasticity of release. 237 

To directly determine the contribution of synaptic and nuclear CtBP1 to the defect in the retrieval 238 

of the fused SVs observed in CtBP1KD neurons we performed imaging experiments in neurons, 239 

where CtBP1 KD was complemented by expression of synaptic or nuclear rescue constructs. 240 

Synaptically-localized EGFP-CtBP1 expressed on CtBP1KD944 background led to ~80% 241 

restoration of Syt1 Ab uptake driven by network activity. In contrast, the expression of nuclear 242 

YFP-CtBP12(NLS)-CtBP1 failed to rescue Syt1 Ab uptake in CtBP1KD944 neurons (Figure 4A, 243 

B). In addition, the expression of EGFP-CtBP1 with aspartate 355-to-alanine mutation (D355A), 244 

which impairs the fission activities of CtBP1 (Bonazzi et al., 2005), also failed to restore the Syt1 245 

Ab uptake in CtBP1KD neurons (Figure 4A,B), suggesting that the function of CtBP1 in fission is 246 

required for normal SV recycling. Next, we tested the ability of synaptic vs. nuclear CtBP1 247 

expression to rescue the aberrant exo-endocytosis observed upon depletion of endogenous 248 

CtBP1 (Figure 1H-K) To this end we used a sensor composed of synaptophysin fused to the 249 

monomeric, orange pH-sensitive mOrange2 (sypmOr2), which we co-expressed with the EGFP 250 

and YFP-labeled rescue constructs (Figure 4C,D). The fluorescence recovery after stimulation 251 

with 200 APs at 20 Hz was significantly retarded in CtBP1KD944: it did not reach full recovery 252 

during the time of imaging and had a greater recovery halftime compared to the controls (Figure 253 

4C,D). The expression of synaptic EGFP-CtBP1 on CtBP1KD944 background fully rescued the 254 

normal SV retrieval, while nuclear YFP-CtBP2(NLS)-CtBP1 or the fission mutant EGFP-255 
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CtBP1D355A failed to do so (Figure 4C,D). Altogether, these data indicate that synaptic 256 

localization and intact fission activities of CtBP1 are crucial for its role in SV retrieval. 257 

To re-evaluate the altered short-term plasticity measured by the electrophysiological recordings of 258 

CtBP1-depleted autaptic neurons (Figure 3L), we monitored the exocytosis of endogenous syt1 259 

during a train of 200 AP at 10 Hz using an antibody against its luminal domain coupled to 260 

CypHer5E (Syt1 Ab-CypHer). CypHer5E is a pH sensitive dye with maximal fluorescence at 261 

acidic pH in the vesicle lumen and fluorescence decline upon SV exocytosis (Hua et al., 2011). 262 

Experiments were performed in the presence of bafilomycin A1 (Figure 4E) or folimycin (Figure 263

S4) to block SV reacidification and thus visualize net SV fusion. To normalize for potential 264 

differences in the initial release probability and thus uncover the contribution of SV retrieval, the 265 

response amplitudes after a reference train of 40 APs at 20 Hz, which leads to the release of 266 

RRP (unchanged between control and CtBP1KD, Figures 1G, 2I,M 3H,I), were used for 267 

normalization as described previously (Hua et al., 2013). This reference pulse was followed by a 268 

brief recovery period and a test stimulus of 200 AP at 10 Hz. The amplitudes of the fluorescence 269 

responses to 200 AP were strongly reduced in CtBP1KD944 compared to the control for stimuli 270 

delivered at 5, 10 or 40Hz (Figure 4E,F and S4A,B). The expression of YFP-CtBP2(NLS)-CtBP1 271 

on CtBP1KD944 background did not improve this decrease, while the responses in KD neurons 272 

expressing EGFP-CtBP1 construct were not significantly different from control (Figure 4E,F). 273 

These experiments further supported the view that synaptic CtBP1 is required for efficient SV 274 

recycling during sustained neuronal activity.  275 

Dynamin-dependent SV recycling is unaffected in CtBP1-deficient neurons. 276 

The GTPase dynamin plays a key role in the reformation of SVs by catalyzing the fission of SV 277 

membranes from the plasma membrane and endosomal structures (Gan and Watanabe, 2018; 278 

Kononenko and Haucke, 2015). In non-neuronal cells, CtBP1 was described as an accessory 279 

protein in the assembly of dynamin-independent fission machinery, which includes molecules like 280 

ADP ribosylation factor (Arf), phospholipase D (PLD) and lysophosphatidic acid acyltransferase 281 

(LPAAT) (Haga et al., 2009; Pagliuso et al., 2016; Valente et al., 2012). To investigate a possible 282 

link of CtBP1 to the established presynaptic endocytic machinery, we assessed the nanoscale 283 

localization of CtBP1 in respect to other membranous structures implicated in SV recycling. To 284 

this end, we performed super-resolution dual-color STED microscopy of neurons labeled with 285 

antibodies against CtBP1, the SV protein Syt1 and several endocytic markers followed by co-286 

localization modeling. Dynamin1 labeling was used to visualize the classic endocytic machinery 287 
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(Figure 5A). Since many of the components of the CtBP1-associated fission machinery were 288 

shown to coordinate the endosomal trafficking of membrane proteins, we also labeled the 289 

neurons with markers for early (rab5), late (rab7) and recycling (rab22) endosomes (Figure 5A). 290 

Prior to staining, neuronal cultures were first silenced with APV ((2R)-amino-5-phosphonovaleric 291 

acid; (2R)-amino-5-phosphonopentanoate) and CNQX (6-cyano-7-nitroquinoxaline-2,3-dione) for 292 

10 minutes, in order to reduce the intersynaptic variability induced by the endogenous network 293 

activity. We analyzed the distance of CtBP1 to other markers at rest and also monitored the co-294 

localization in cells fixed 30 seconds after stimulation with 200 AP at 40 Hz (Figure S5). Overall, 295 

CtBP1 localized in the proximity (0-200 nm) of dynamin1 and Syt1, while all endosome markers 296 

we probed for were much more distant (100-500 nm) (Figure 5A,B and S5A-E). Synaptic 297 

stimulation did not affect the co-localization of CtBP1 with dynamin1 and Syt1 but led to a 298 

significant increase in the distance between CtBP1 and endosome markers rab5 and rab7, but 299 

not rab22 (Figure S5A-E). Thus, CtBP1 likely acts at the membrane domain marked by Syt1 and 300 

dynamin1 indicating its potential role in the retrieval of exocytosed SVs. The poor baseline co-301 

localization of CtBP1 with the endosomal markers rab5, rab7 and rab22, and subsequent 302 

increase of distance upon neuronal stimulation, suggests a role of CtBP1 in the formation of 303 

vesicular carriers rather than its constitutive association with intracellular membranous structures.  304 

Given the fact that CtBP1 was reported to regulate membrane trafficking in dynamin-independent 305 

exocytic and endocytic pathways (Bonazzi et al., 2005), the high synaptic co-localization with 306 

dynamin1 was unexpected. Therefore, in order to test whether CtBP1 contributes to the 307 

presynaptic dynamin-dependent endocytosis, we quantified the Syt1 Ab-CypHer uptake in control 308 

and CtBP1KD944 neurons treated with the potent dynamin inhibitors dynole 34-2 (Figure 5C,D). 309 

As inhibition of dynamin increases the membrane stranding of SV proteins due to an impaired 310 

retrieval (Raimondi et al., 2011) we used Syt1 Ab-CypHer uptake to determine specifically the 311 

fraction of Syt1 retrieved through dynamin-independent endocytosis. Dynole 34-2 had a 312 

comparable effect in control and in CtBP1KD944 neurons, and reduced the Syt1 Ab-CypHer Ab 313 

uptake by more than 80% (Figure 5D). The large effect of dynamin inhibition in both conditions 314 

confirms the principal requirement of dynamin for efficient SV retrieval at the presynapse. 315 

However, as the effects of CtBP1KD and dynole 34-2 were not completely additive but rather 316 

cooperative and considering the high degree of co-localization observed for CtBP1 and dynamin, 317 

we propose that despite their involvement in independent machineries they might act in concert at 318 

the same membrane domain to mediate effective SV retrieval. 319 

CtBP1 promotes retrieval of SVs by activation of presynaptic PLD1 320 
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Given the established role of CtBP1 in membrane trafficking in non-neuronal cells, we 321 

hypothesized a role of CtBP1-based fission machinery in SV recycling. To test this hypothesis, we 322 

first treated control and CtBP1-depleted neurons with brefeldin A (BFA), a fungal antibiotic 323 

interfering with the intracellular membrane trafficking. BFA targets several proteins involved in 324 

membrane trafficking, including CtBP1. It induces ADP-ribosylation of CtBP1 (also known as 325 

BFA-ADP-ribosylation substrate, shortly BARS), which interferes with the assembly of CtBP1-326 

based fission complex and results in inhibition of endocytic vesicle formation (Colanzi et al., 2013; 327 

Spano et al., 1999). We applied BFA (2.5µM) only five minutes prior to and during the image 328 

acquisition, which we reasoned is a too short time period to influence synaptic function by 329 

changes in gene expression or soma-to-synapse trafficking. Thus, the effect of BFA treatment 330 

more likely reflected an acute inhibition of CtBP1 and the associated fission machinery at the 331 

presynapse. In agreement with previous reports (Kononenko et al., 2013; Park et al., 2016) (but 332 

see (Kim and Ryan, 2009) for lack of effect of BFA on vGLUT-pHluorin), BFA treatment affected 333 

significantly the post-stimulus fluorescence decay of sypHy in control neurons (Figure 6A) 334 

indicating that BFA slows down the retrieval of exocytosed SVs. In contrast, the sypHy 335 

fluorescence decay was not further affected by BFA in CtBP1KD neurons (Figure 6B), suggesting 336 

that CtBP1-based fission machinery mediates to a great extent the effect of BFA. 337 

The precise molecular mechanism of CtBP1-mediated membrane trafficking is still not fully 338 

understood. It was suggested that CtBP1-based fission complex drives membrane budding and 339 

fission by catalyzing the remodeling of membrane lipids, which leads to formation of fission-prone 340 

membrane domains. In non-neuronal cells, CtBP1 was shown to interact and activate the 341 

phosphodiesterase activity of phospholipase D1 (PLD1), an enzyme catalyzing the conversion of 342 

phosphatidylcholine (PC) into the fusogenic phosphatidic acid (PA) (Donaldson, 2009; Haga et 343 

al., 2009; Raben and Barber, 2017). Although PLD1 was shown to play a role in the control of 344 

neurotransmitter release in Aplysia (Humeau et al., 2001) and in the secretion of neuropeptides in 345 

chromaffin cells (Zeniou-Meyer et al., 2007), its function in the regulation of SV recycling in 346 

mammalian synapses has not been investigated yet. Therefore, next we tested the involvement of 347 

PLD1 in SV recycling and its link to CtBP1-dependent SV retrieval. Acute application of VU 348 

0155069 (1µM for 5 min), a specific inhibitor of PLD1, led to a two-fold decrease in the rate of 349 

sypHy retrieval in control neurons, while it had no effect on the endocytosis rate in CtBP1KD 350 

neurons (Figure 6C,D). 351 

Considering the activity-induced recruitment of CtBP1 to nanodomains co-labeled with dynamin1 352 

and Syt1 and its dissociation from the endosome markers rab5 and rab7 we hypothesized that 353 
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CtBP1 localizes to the membrane proximal regions, where endocytosis of newly released SV 354 

proteins takes place. To address this by independent means we performed imaging with 355 

fluorescently labeled mCLING: a lipophilic reacidification-independent probe suitable for STED 356 

nanoscopy of endocytic organelles (Revelo et al., 2014). We loaded mCLING into the synapses 357 

of APV and CNQX silenced (for 10min) control and CtBP1KD944 neurons by stimulation with 200 358 

AP at 40 Hz and fixed them 30 seconds later. The mCLING labeling was notably reduced in the 359 

synapses in CtBP1KD944 neurons in comparison to the control (Figure 6E,F), but was again 360 

evident upon the expression of shRNA resistant EGFP-CtBP1 construct on CtBP1KD944 361 

background (Figure 6G). We next performed dual-color STED nanoscopy followed by co-362 

localization modelling to assess the co-distribution of mCLING and EGFP-CtBP1 (Figure 6G). 363 

This analysis revealed a significant negative correlation between the intensity of mCLING and the 364 

distance to individual EGFP-CtBP1 puncta, which supports a role of CtBP1 in SV endocytosis 365 

(Figure 6I).  366 

Phosphorylation of CtBP1 at serine 147 (S147), mediated by the kinase Pak1, was found to 367 

strongly increase the capacity of CtBP1 to stimulate membrane fission by increasing its ability to 368 

activate PLD1 (Haga et al., 2009; Liberali et al., 2008). To test the importance of this regulation at 369 

the presynapse we compared the mCLING labeling in neurons expressing the RNAi resistant 370 

EGFP-CtBP1 or EGFP-CtBP1S147A construct on CtBP1KD944 background. The mCLING 371 

labeling was reduced by 80% in cells expressing EGFP-CtBP1S147A as compared to cells 372 

expressing EGFP-CtBP1 (Figure 6G,H) indicating lower ability of this mutant to rescue stimulus-373 

induced membrane retrieval upon CtBP1KD. Moreover, the co-distribution between mCLING and 374 

S147A mutant was shifted towards higher distances compared to EGFP-CtBP1 (Figure 6J), which 375 

likely reflects impaired recruitment to the sites of endocytosis. Taken together these data indicate 376 

that the presence of CtBP1 at the endocytic sites and its phosphorylation at S147 are key factors 377 

determining the efficacy of SV retrieval.  378 

Phosphorylation of CtBP1 regulates its distribution between the CAZ and the presynaptic 379 

endocytic sites. 380 

Previous studies showed that the presynaptic scaffolding proteins Bsn and Pclo recruit CtBP1 to 381 

synapses via a direct interaction (Ivanova et al., 2015; tom Dieck et al., 2005). Despite the tight 382 

functional coupling between SV fusion and endocytosis, it is well established that the two 383 

processes take place at distinct membrane domains within the presynapse (Haucke et al., 2011; 384 

Maritzen and Haucke, 2018). Thus, the association of CtBP1 with Bsn and Pclo, which are 385 



 
 

13 
 

established components of the SV release sites, is seemingly in disagreement with the proposed 386 

function of CtBP1 in SV endocytosis. To address this apparent ambiguity, we performed the 387 

following series of experiments. First, we performed co-immunoprecipitation (CoIP) of Bsn with 388 

EGFP-CtBP1, overexpressed in primary cortical cultures in basal state or upon a treatment with 389 

the Pak1 inhibitor IPA3 for 1 h (Figure 7A). At basal state a considerable CoIP of CtBP1 with 390 

PLD1 but only a low binding to Bsn were detected. The IPA3 treatment visibly reduced the overall 391 

serine/threonine phosphorylation of CtBP1 (Figure 7C,D). Consistent with the requirement for 392 

Pak1-dependent phosphorylation of CtBP1 for its association with PLD1, IPA3 reduced the CoIP 393 

of PLD1 with CtBP1 to an undetectable minimum but increased the association of CtBP1 with Bsn 394 

(Figure 7A and B). This indicates that the phosphorylation of CtBP1 by Pak1 acts as a molecular 395 

switch which triggers its dissociation from Bsn and binding to PLD1. To further test this 396 

hypothesis, we compared the nanoscale co-localization of EGFP-CtBP1 or S147A mutant with 397 

endogenous Bsn at synapses of acutely silenced neurons before and upon stimulation with 200 398 

AP at 40 Hz. Consistent with our previously published observations, stimulation led to a tighter 399 

co-localization of EGFP-CtBP1 and Bsn (Figure 7E,F) (Ivanova et al., 2015). EGFP-CtBP1S147A 400 

showed a greater co-localization with Bsn than EGFP-CtBP1 in silenced cells and no effect on its 401 

co-distribution with Bsn was observed upon stimulation (Figure 7E,F). This supports our view that 402 

Pak1-mediated phosphorylation of S147 favors a redistribution of CtBP1 from Bsn towards PLD1, 403 

thus, promoting SV retrieval through activation of PLD1.  404 

Discussion:  405 

Nuclear CtBP1 restricts synaptogenesis, while synaptic CtBP1 promotes SV retrieval 406 

In this study we investigated the effect of CtBP1 depletion on synaptic function using knock down 407 

and knock out approaches. Neurons lacking CtBP1 had normal overall morphology but showed a 408 

significant shift in the distribution of SVs towards the AZ and an enlargement of the docked SVs 409 

at rest. Interestingly, a similar change in the distribution of SVs was also observed after treatment 410 

with BFA (Ramperez et al., 2017), which as shown here inhibits SV recycling via CtBP1, and 411 

upon depletion of Arf6, a component of the CtBP1-dependent fission machinery and an 412 

alternative activator of PLD1 (Haga et al., 2009; Tagliatti et al., 2016; Valente et al., 2012). Thus, 413 

it is tempting to speculate that insufficient PLD1 activity in the absence of CtBP1 might cause this 414 

phenotype. The efficiency of fission during vesicle budding crucially affects the size of the 415 

resulting vesicular structures. In line with that, enlarged SVs were observed in mutants of 416 

dynamin, AP180 and syndapin, which have been implicated in different steps of SV reformation, 417 
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like fission, recruitment of the clathrin-coat or induction/sensing of membrane curvature 418 

(Ferguson et al., 2007; Koch et al., 2011; Zhang et al., 1998). Thus, an involvement of CtBP1 in 419 

the fission of the SV membranes, might explain the changes in SV size observed in Ctbp1 KO 420 

synapses. 421 

Interference of CtBP1 expression in cultured neurons revealed its multifaceted role in the 422 

regulation of synaptogenesis and neurotransmission. A rescue strategy with CtBP1 fusion 423 

proteins selectively sorted to nucleus or synapses revealed distinct roles for CtBP1 in these 424 

spatially separated neuronal compartments. Nuclear CtBP1 restricted synaptogenesis and 425

presynaptic vesicular release probability possibly by repressing the expression of plasticity-426 

related genes, such as neurotrophins or neurotransmitter receptors (Ivanova et al., 2015). In line 427 

with that, the expression of the nuclear rescue construct YFP-CtBP2(NLS)-CtBP1 could 428 

normalize the higher number of morphologically identified excitatory synapses, the enlarged 429 

amplitudes of the evoked EPSC and the higher Pvr and PPR that were observed in CtBP1KD944 430 

neurons. Notably, the expression of the synaptic rescue (EGFP-CtBP1) on CtBP1KD944 431 

background tended to enhance the effect of CtBP1 depletion on synapse density and EPSC 432 

amplitude, suggesting a dominant-negative effect of this construct on the nuclear functions of 433 

CtBP1. One possible explanation of this effect is that the EGFP-CtBP1 binds to the nuclear 434 

CtBP1-interacting partners and promotes their cytoplasmic retention. However, expression of this 435 

construct on CtBP1KD944 background compensated the defects in SV retrieval and ameliorated 436 

the enhanced short-term depression of neurotransmission upon repetitive stimulations. This 437 

indicates a positive effect of synaptic CtBP1 on neurotransmission. Based on this, we can 438 

speculate that the recently reported activity-induced redistribution of CtBP1 from nucleus to 439 

presynapses exerts a dual-positive effect on neurotransmission (Ivanova et al., 2015). Thus, 440 

during bursts of intense neuronal activity the reduced nuclear abundance of CtBP1 will lead to a 441 

release of the transcriptional block of neuroplasticity-related genes, while the enhanced synaptic 442 

targeting will facilitate SV recycling.  443 

CtBP1 mediated membrane fission and PLD1 activation are required for SV retrieval 444 

Our data indicate that CtBP1-mediated membrane fission and activation of PLD1 has an 445 

important contribution to the effective SV retrieval at the presynapse. We provide multiple 446 

evidences supporting this view: 1) CtBP1D355A fission-deficient mutant failed to rescue SV 447 

retrieval in CtBP1KD944, 2) CtBP1S147A mutant tha448 

PLD1 failed to rescue endocytosis visualized with mCLING and 3) the pharmacological inhibition 449 
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of CtBP1-based fission complex using BFA or inhibition of PLD1 activity phenocopied the 450 

aberrant SV retrieval observed in CtBP1KD. Our data also indicate a role of PLD1 in SV recycling 451 

at hippocampal synapses. PLD1 was detected in synaptic plasma membranes isolated from rat 452 

synaptosomes and interference with PLD1 was shown to affect acetylcholine release from nerve 453 

ganglia in Aplysia (Humeau et al., 2001). However, PLD1 was mainly discussed in the context of 454 

exocytosis in neurons and chromaffin cells (Zeniou-Meyer et al., 2007). Our data indicate a role of 455 

PLD1 in SV retrieval in hippocampal synapses and reveal a requirement for CtBP1-mediated 456 

activation of PLD1 in this process. The activation of PLD1 depends on Pak1-mediated 457 

phosphorylation of CtBP1. It is unclear whether and how Pak1 activity is regulated at the 458 

presynapse but based on our findings we can speculate that the level of presynaptic Pak1 activity 459 

could regulate the SV retrieval and thereby modulate short-term plasticity of neurotransmission. 460 

Interestingly, the phosphorylation of S147 of CtBP1 by Pak1, which is necessary for PLD1 461 

activation, also induces dissociation of CtBP1 from Bsn, which anchors it to the active zones. This 462 

suggests that Pak1 activity might induce a rapid activation of PLD1 in the vicinity of presynaptic 463 

release sites and thereby link SV fusion and retrieval in time, space and extent. 464 

CtBP1-mediated lipid reorganization in SV retrieval  465 

CtBP1-based fission machinery was proposed to act in a dynamin-independent manner at the 466 

Golgi and plasma membrane in non-neuronal cells (Bonazzi et al., 2005; Haga et al., 2009; Yang 467 

et al., 2008). However, the fluid phase endocytosis switched from a CtBP1-dependent to a 468 

dynamin-dependent mechanism in fibroblasts in which CtBP1 was knocked out (Bonazzi et al., 469 

2005), suggesting a tight interaction between these pathways. Thus, it is possible that CtBP1- 470 

and dynamin-based fission machineries converge in their action at the presynapse, where 471 

particularly potent endocytosis is required for sustained SV replenishment. CtBP1 was suggested 472 

to mediate fission of target membranes by activation of lipid enzymes such as PLD1 and LPAAT, 473 

that generate curvature-inducing lipid modifications (Haga et al., 2009; Liberali et al., 2008; 474 

Pagliuso et al., 2016), and by their recruitment to the machinery, that initiates vesicular budding 475 

and tubulation (Valente et al., 2012). PLD1 and LPAAT catalyze production of the fusogenic PA, 476 

which, due to its conical shape, promotes negative membrane curvature necessary for vesicle 477 

fusion and fission (Kooijman et al., 2003). Besides its structural role, PA was also linked to the 478 

generation of PI(4,5)P2, the phospholipid involved in the recruitment of numerous proteins 479 

involved in endocytosis, including dynamin (Puchkov and Haucke, 2013). Specifically, PA 480 

activates PI kinases necessary for PI(4,5)P2 production (Jenkins et al., 1994; Moritz et al., 1992) 481 

-based fission complex in 482 
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non-neuronal cells (Valente et al., 2012). Thus, it is likely that CtBP1 promotes SV retrieval by 483 

recruitment and activation of multiple lipid-modifying enzymes, which drive the formation of a lipid 484 

environment permissive for compensatory endocytosis. The tight co-localization of CtBP1 and 485 

dynamin as well as the cooperative effect of the interference with their functions on SV recycling 486 

support this view. However, future studies will be needed to gain more insight into the 487 

mechanisms linking and regulating the different fission machineries involved in SV recycling. 488 

LEAD CONTACT AND MATERIALS AVAILABILITY 489 

Further information and requests for resources and reagents can be directed to and will be 490 
fulfilled by the Lead Contact, Anna Fejtova (Anna.Fejtova@uk-erlangen.de). 491 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 492 

Animals 493 

Cells and tissues used in this study were obtained from Wistar rats, Sprague-Dawley rats, 494 

C57BL/6N mice and Ctbp1tm1Sor (Ctbp1 KO) mouse strain (Hildebrand and Soriano, 2002) 495 

backcrossed to C57BL/6N. Animals of both sex were used. Animal handling was performed 496 

according to the regulations of the European Committees Council Directive 86/609/EEC, 497 

Landesverwaltungsamt Sachsen Anhalt, (AZ: T LIN-AF/2009), Berlin state government agency 498 

for Health and Social Services and the animal welfare committee of Charité Medical University 499 

Berlin, Germany (license no. T 0220/09).  500 

Lentiviral particle production 501 

Lentiviral particles were produced as described previously with slight modifications (Ivanova et al., 502 

2015). HEK293T cells (ATCC CRL-3216) were grown in media containing 10% fetal bovine 503 

serum (FBS) to 80% confluence and transfected using the calcium phosphate method (Fejtova et 504 

al., 2009) with three vectors: FUGW-based transfer, psPAX2 packaging, and p-CMV-VSV-G 505 

pseudotyping vectors (ratio 2:1:1). Cells were incubated for 8 h at 37°C in 5% CO2 atmosphere, 506 

before the FBS medium was replaced by Neurobasal (NB) medium, containing B27, antibiotics, 507 

and 0.8 mM glutamine. Virus-containing media was collected at day 3 and 4, passed through 0.45 508 

-80°C. 509 

Primary cultures and treatments 510 
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Primary dissociated hippocampal and cortical cultures from rat embryos and C57BL/6N and 511 

CtBP1 KO neonatal mice of were prepared as described in (Ivanova et al., 2015; Lazarevic et al., 512 

2011).  513 

Autaptic cultures from P0-P2 C57BL/6N mice were grown on coverslips with a dotted pattern of 514 

astrocytic microislands (Bekkers and Stevens, 1991). To grow neurons individually, 0.15% 515 

agarose solution was spread on 30 mm coverslips. Coating solution containing collagen and poly-516 

D-lysine in acetic acid was stamped onto the agarose, thus creating small islands of substrate 517 

with a diameter of ab  Hippocampi were dissected out and digested with 25 U/ml of 518 

papain for 60 min at 37°C. After papain inactivation, hippocampi were mechanically dissociated in 519 

Neurobasal-A medium containing B-27, Glutamax and penicillin/streptomycin. To obtain a 520 

desirable distribution of neurons, astrocytes and neurons were plated onto the coverslips with a 521 

density of 50000 and 3000 cells/coverslip, respectively. To knock down CtBP1, neurons were 522 

infected 24 hours later with lentiviruses expressing scrambled, shRNA against CtBP1 or the 523 

rescue constructs EGFP-CtBP1 and YFP-CtBP2(NLS)-CtBP1. Experiments were performed on 524 

DIV14 (electrophysiological recordings) or DIV16-21 (fixed and live-cell imaging).  525 

Hippocampal neurons were co-transfected with syp mOrange2 and a plasmid expressing CtBP1 526 

scr, CtBP1KD944 or CtBP1KD944 along with shRNA-resistant EGFP-CtBP1, EGFP-527 

CtBP1D355A or YFP-CtBP2(NLS)-CtBP1 at DIV6 using Lipofectamine 2000 (Thermo Fisher 528 

Scientific) as recommended by the manufacturer. The neurons were used for live imaging 8 to 10 529 

days after the transfection.  530 

For the treatments, the following drugs were used: d ( ) 2 amino 5 phosphonopentanoic acid 531 

(APV, 50 cyano 7 nitroquinoxaline 2,3 dione disodium 532 

bafilomycin 533 

-treated with these 534 

inhibitors for 5 minutes before imaging and the inhibitors were kept in the imaging buffer during 535 

536 

or lysed for western blotting. The inhibitors of dynamin, Dynole 34-537 

for 1h during Syt1 Ab-CypHer uptake. The fixable endocytosis marker mCLING (ATTO647N-538 

labelled in Figure 6G and H and DY654-labelled in Figure 6E and F, 1:100, Synaptic Systems) 539 

540 

min before cells were stimulated with 200 AP at 40 Hz. To eliminate unspecific labeling neurons 541 

were washed three times with extracellular solution and fixed within 30 seconds after stimulation 542 

with a mixture of 4% paraformaldehyde (PFA) and 0.2% glutaraldehyde, as recommended by the 543 

manufacturer.  544 
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 545 

METHOD DETAILS 546 

 547 

Antibodies 548 

The following primary antibodies were used in this study: Mouse antibodies against: CtBP1 549 

(immunocytochemistry (ICC) 1:1,000, Western blotting (WB) 1:5,000, BD Biosciences, 612042), 550 

CtBP2 (WB 1:2000 BD Biosciences, 612044) synaptotagmin1 lumenal domain Oyster 550 or 551 

CypHer5E-labeled (ICC 1:200, Synaptic Systems, 105311 and 105311CpH), rab5 (ICC 1:500, 552 

Synaptic Systems, cells stained with this antibody were fixed with ice-cold methanol for 10 min, 553 

followed by rehydration in PBS for 20 min, 108011), rab7 (ICC 1:1,000, Abcam, ab50533), 554 

phosphoserine/threonine (WB 1:1000, BD Biosciences, 612548), GluA Oyster 550-labeled (ICC 555 

1:200, Synaptic Systems, 182411 C3) -tubulin (WB 1:1000, Sigma Aldrich); Rabbit antibodies 556 

against: CtBP1 (ICC 1:1,000, WB 1:1,000, Synaptic Systems, 222002), GFP (ICC 1:1,000, WB 557 

1:5,000, Abcam, ab 6556), SV2B (ICC 1:200, Synaptic Systems, 119103), GAPDH (WB 1:3000, 558 

Abcam, ab37168), synaptotagmin1 lumenal domain Oyster 550-labeled (ICC 1:200, Synaptic 559 

Systems, 105103C3), synaptotagmin 1 lumenal domain (WB 1:1000, Synaptic Systems, 105102), 560 

dynamin1 (ICC 1:1000, Abcam, ab3456), rab22a (ICC 1:1000, Abcam, ab137093), 561 

Phospholipase D (WB 1:1000, Cell Signaling technologies, 3832S), , Homer1 (ICC 1:500, 562 

Synaptic Systems, 160003); Guinea pig antibodies against: synapsin 1, 2 (ICC 1:1,000, 563 

Synaptic Systems, 106004), synaptophysin 1 (ICC 1:1,000, Synaptic Systems, 101004), Piccolo 564 

(WB 1:2000, Dick et al, 2001). 565 

The following secondary cross-adsorbed antibodies were used in this study: Alexa 488  (ICC: 566 

1:1,000), Cy3 (ICC: 1:1,000), Cy5 (ICC: 1:2,000), Alexa 680- (WB 1:20,000) conjugated whole 567 

IgGs against mouse, rabbit and guinea pig were obtained from Invitrogen/Mol. Probes, IRDye  568 

800CW (WB 1:20,000) and Atto 647N (1:500, 610-156-121 and 611-156-122) from Rockland and 569 

Abberior STAR 580 (1:100, 2-0002-005-1 and 2-0012-005-8) from Abberior GmbH. 570 

DNA constructs  571 

EGFP-tagged CtBP1 was generated by cloning the sequence for CtBP1-S into pEGFPC vector. 572 

Subsequently, the DNA cassette containing EGFP-CtBP1 was shuttled into FUGW H1 lentiviral 573 

vector (Leal-Ortiz et al., 2008), replacing EGFP coding sequence. The shRNAs against CtBP1 574 

and YFP-CtBP2(NLS)-CtBP1 constructs were reported previously (Ivanova et al., 2015; Verger et 575 

al., 2006). All point mutations, including the silent point mutations for the rescue experiments, 576 
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were introduced by inverse PCR using primers containing the mutations and CtBP1-S coding 577 

sequence cloned in pBluescriptII SK-(AgilentTechnologies). The ratio:sypHy construct and syp 578 

mOrange2 used in this study were reported in (Lazarevic et al., 2017; Rose et al., 2013) and 579 

(Egashira et al., 2015), respectively. All constructs were verified by sequencing. 580 

Ultrastructural analysis 581 

Organotypic hippocampal slice cultures from Ctbp1 KO and WT littermates were prepared at 582 

postnatal day 0 and were cryo-fixed after 4-5 weeks in vitro under cryo-protectant conditions 583 

(20% bovine serum albumin in culture medium) using the High Pressure Freezing device 584 

HPM100 (Leica), and cryo-substituted in Freeze Substitution Processor EM AFS2 (Leica) 585 

according to previously published protocols (Imig and Cooper, 2017; Imig et al., 2014). For 2D 586 

analyses of synaptic morphology, electron micrographs were acquired from 60 nm-thick plastic 587 

sections with a transmission electron microscope (Zeiss LEO 912-Omega) operating at 80 kV. 588 

For 3D electron tomographic analysis of docked SV, 200 nm-thick plastic sections were imaged in 589 

a JEM-2100 transmission electron microscope (JEOL) operating at 200 kV. SerialEM 590 

(Mastronarde, 2005) was used to acquire single-axis tilt series (-60°/-55° to ±55°/±60°; 1° 591 

increments) at 25,000 fold magnification with an Orius SC1000 camera (Gatan, Inc.). Tomograms 592 

reconstructed from tilt series using the IMOD package (Kremer et al., 1996) had a voxel size of 593 

x,y,z = 1.82 nm. Tomogram acquisition and analyses were performed blindly. Quantifications 594 

were done manually using ImageJ (National Institutes of Health). The smallest SV distances from 595 

the outer leaflet of the SV membrane to the inner leaflet of the AZ plasma membrane were 596 

measured using the straight line tool of the ImageJ software. Only SVs observed to be in physical 597 

contact at their midline with the presynaptic membrane were considered docked (0-2 nm 598 

distance). The mean SV diameter was calculated from the area of the SV measured at its midline 599 

to the outer leaflet of the SV membrane using the elliptical selection tool of ImageJ. 600 

For illustrative purposes, images depicting tomographic sub-volumes represent an overlay of 601 

seven consecutive tomographic slices produced using the slicer tool of the 3dmod software of the 602 

IMOD software package to generate an approximately 13 nm thick sub-volume. 603 

Quantitative real-time PCR 604 

Quantitative real-time PCR was performed as described in (Ivanova et al., 2015). Total RNA was 605 

extracted from primary cortical cultures (DIV16) superinfected on the day of plating with lentiviral 606 

particles driving the expression of scrambled, shRNA944 and YFP-CtBP2(NLS)-CtBP1, using 607 

RNeasy Plus Mini Kit (Qiagen) and following the instructions of the manufacturer. The transcript 608 
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levels of BDNF and Arc were analyzed by a customized version of Rat Synaptic Plasticity RT2 609 

Profiler PCR Array (Qiagen). To calculate the expression of BDNF and Arc in relation to a 610 

611 

method, available in the software of Roche LightCycler480, to determine the crossing point (CP) 612 

of the PCR. The expression of lactate dehydrogenase A was used as a reference to calculate the 613 

relative mRNA levels of BDNF and Arc. 614 

Biochemical experimental work 615 

Cortical neurons with cell density 10 million per 75 cm2 flask were superinfected with lentiviral 616 

particles, driving the expression of EGFP-CtBP1. Cells (DIV16) were lysed in 10mM Tris HCl, 617 

150mM NaCl, 2% SDS, 1% deoxycholate and 1% Triton X-100 containing complete protease 618 

inhibitors (Roche), and PhosStop (Roche) and co-immunoprecipitations were performed using 619 

MicroMACS anti GFP MicroBeads and MicroColumns (Miltenyi Biotec) according to the 620 

instructions from the manufacturer.  621 

Crude synaptosomal fraction (P2) was prepared as follows: First, cell or mouse brain 622 

homogenates were prepared in HEPES-buffered sucrose (4 mM HEPES pH 7.4, 0.32 M sucrose) 623 

and centrifuged at 1000 x g for 10 min to pellet the nuclear fraction (P1). The supernatant was 624 

then centrifuged at 12000 g for 20 min to give the crude synaptosomal pellet (P2). The crude 625 

synaptosomal fraction (P2) was lysed in 10 mM Tris HCl, 150mM NaCl, 2% SDS, 1% 626 

deoxycholate and 1% Triton X-100 containing complete protease inhibitors (Roche), and 627 

PhosStop (Roche) and further subjected to IP or western blotting. 628 

Protein samples were separated on 5 20% Tris-glycine gels, or 3.5 8% Tris-acetate gels as 629 

described previously (Ivanova et al., 2015) or on 10% (Bio-Rad TGX-Stain free gels) and blotted 630 

onto Millipore Immobilon FL PVDF membranes by tank or semidry blotting. Immunodetection was 631 

performed on Odyssey Infrared Scanner (LI-COR). For the quantification of the immunoblots the 632 

integrated density (ID) of signals was measured using ImageJ by setting rectangular ROIs with 633 

identical size around or using Image Studio Software (LI-COR). Samples of each experimental 634 

group were always loaded and quantified on the same membrane. TCE total protein stain used 635 

for normalization in Figure 1B. In Figure S2 -tubulin were used for normalization in 636 

homogenates and P2 fraction, respectively. The values for ID of CtBP1 or Pak1 (Figure 7A-D) 637 

were normalized to the corresponding expression levels of the two proteins in each experimental 638 

group. The antibodies used for immunodetection and the molecular weight of the markers are 639 

indicated in the figures. 640 
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Microscopy and image analysis 641 

Immunostaining of neurons was performed as described in (Lazarevic et al., 2011). For 642 

quantifications, identical antibodies solutions were used for all coverslips from the same 643 

experiment. For the co-localization analysis, neurons were silenced with APV and CNQX for 10 644 

minutes, in order to minimize the effect of the ongoing activity on the variance between synapses 645 

and then stimulated with 200 AP at 40 Hz. Cells were fixed within 30 seconds after the end of 646 

stimulation. 647 

Staining with synaptotagmin 1 antibody (Syt1 Ab uptake) was performed by incubating the cells 648 

with fluorescently-labelled primary antibody dissolved in extracellular solution, containing 119 mM 649 

NaCl, 2.5 mM KCl, 2 mM CaCl2, 2 mM MgCl2, 30 mM glucose, and 25 mM HEPES, pH 7.4 for 30 650 

min at 37°C (Lazarevic et al., 2011) before fixation. For the imaging with CypHer5E-labeled anti-651 

synaptotagmin1 antibody, cells were incubated with the antibody diluted in a buffer containing 120 652 

mM NaCl, 5 mM KCl, 2 mM MgCl2, 2 mM CaCl2, 10 mM glucose, and 18 mM NaHCO3, pH 7.4 653 

for 2-3 hours at 37°C prior imaging. 654 

Epifluorescence images were acquired on a Zeiss Axio Imager A2 microscope with Cool Snap EZ 655 

camera (Visitron Systems) controlled by VisiView (Visitron Systems GmbH) software.  656 

Confocal images in Figure S2A were acquired on a Leica SP5 confocal microscope. The format 657 

of the images was 2048x2048 pixels display resolution, 8 bit dynamic range, for acquisition 63x 658 

objective, NA 1.40 and 2x optical zoom were used, which results in a voxel size of approximately 659 

50 nm. 660 

Dual-color STED images (1024x1024 pixels display resolution, 8 bit dynamic range) were 661 

acquired on a Leica TCS SP8-3X gated STED microscope using a HC APO CS2 100x objective, 662 

NA 1.40, and 5x optical zoom, corresponding to a voxel size of approximately 23 nm. 16 times 663 

line averaging was applied on frames acquired at a scan speed 600 Hz. The built-in pulsed white 664 

light laser of the setup was used to excite Abberior STAR 580 and Atto 647N at 561 nm and 650 665 

nm, respectively. The detection was done at 580-620 nm for Abberior STAR 580 and 660-730 nm 666 

for Atto647N. Both dyes were depleted using a pulsed 775 nm depletion laser. Time-gated 667 

detection of 0.5-1 ns to 6 ns was set for both STED channels. All raw data were subsequently 668 

deconvolved using the calculated point spread function (PSF) of the system and the Classic 669 

Maximum Likelihood Estimation (CMLE) algorithm with Huygens Professional (SVI,15.10.1). In 670 

brief, after an automatic background correction, the signal to noise ratio was set to 15 and the 671 

optimized iteration mode of the CMLE was run until a quality threshold of 0.05 was reached. The 672 

deconvolved datasets were corrected for a chromatic aberration in z, using the Chromatic 673 

Aberration Corrector (CAC) in Huygens. 674 
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The co-localization analysis was performed on the deconvolved STED stacks using Imaris 8.3 675 

(Bitplane, Oxford Instruments). To detect punctate staining as spots Imaris spot detection 676 

algorithm was applied as follows: the sensitivity for the detection of the spots in each channel was 677 

determined by an automatically generated threshold and the spots diameter was set to 0.06 µm. 678 

The distances between the spots in the two channels were measured using a customized version 679 

of the Imaris XTension Spots Colocalize, which determines the co-localization between the spots 680 

within a user-defined distance (1 µm) and bins the data into several bins with equal width (100 681 

nm).  682 

For quantifications, the same detector settings were used for all coverslips quantified in one 683 

experiment. From each culture, images from at least two different coverslips were acquired and 684 

quantified to minimize experimental variability. The nuclear fluorescence was assessed as 685 

established before (Ivanova et al., 2015). ImageJ (NIH) and OpenView software (Tsuriel et al., 686 

2006) were used for quantitative immunofluorescence analysis. After removing the background by 687 

threshold subtraction in ImageJ, synaptic puncta were defined with OpenView software by setting 688 

rectangular regions of interest (ROI) with identical dimensions around local intensity maxima in 689 

the channel with staining for synapsin or any of the other synaptic markers that were used (GluA, 690 

homer1, synaptophysin, SV2B). Mean immunofluorescence (IF) intensities were measured in the 691 

synaptic ROIs in all corresponding channels using the same software and normalized to the mean 692 

IF intensities of the control group for each of the experiments. The number of synapses per unit of 693 

dendrite length was determined as follows: First synapsin puncta along 30 µm of proximal 694 

dendrite, was detected using Find Maxima function in ImageJ, by setting the same noise 695 

tolerance to all images quantified in one experiment; Mean IF intensities of GluA were measured 696 

in circular ROIs set around the local intensity maxima in the image with synapsin staining; The 697 

number of GluA puncta co-localizing with synapsin was calculated by applying an identical 698 

intensity threshold for GluA detection between the different conditions within an experiment. 699 

pHluorin imaging and analysis 700 

The pHluorin imaging was performed with hippocampal cultures DIV16 to 20, transduced with 701 

lentiviral particles on the day of plating.  702 

The coverslips were removed from the cell culture plates and mounted in an imaging chamber 703 

(Warner instruments), supplied with a pair of platinum wire electrodes, 1 cm apart, for electrical 704 

stimulation. The imaging was performed at 26°C in extracellular solution, containing 119 mM 705 

706 

6 cyano 7 nitroquinoxaline 2,3 d ( ) 2 amino 5707 
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phosphonopentanoic acid (APV, Tocris), on inverted microscope (Observer. D1; Zeiss-as 708 

described above) equipped with an EMCCD camera (Evolve 512; Photometrics) controlled by 709 

MetaMorph Imaging (MDS Analytical Technologies) and VisiView (Visitron Systems GmbH) 710 

software, using 63x objective. EGFP ET filter set (exciter 470/40, emitter 525/50, dichroic 495 LP, 711 

Chroma Technology Corp.) and Cy5 ET filter set (exciter 620/60, emitter 700/75, dichroic 660 LP, 712 

Chroma Technology Corp.) were used for imaging of the pHluorin and CypHer5E, respectively. 713 

Cultures were stimulated with a train of 40 or 200 action potentials (1 ms, constant voltage 714 

pulses) at 5, 20 or 40 Hz using S48 stimulator (GRASS Technologies). The alkaline trapping 715 

method was used for quantification of the recycling vesicle pools. In brief, the stimulation of sypHy 716 

717 

inhibitor of the vesicular V-type ATPase. Exocytosis of RRP was triggered by delivering of 40 AP 718 

at 20 Hz. Following a 2 min break after the end of the first train of stimuli TRP was released by 719 

stimulation with 200 AP at 20 Hz. The relative sizes of RRP and TRP were determined as 720 

fractions of the total sypHy-expressing pool measured after addition of alkaline imaging buffer (60 721 

mM NaCl in the extracellular solution was replaced with 60 mM NH4Cl). Fluorescent images were 722 

acquired at 1 Hz (Figure 1I) and 10 Hz (Figures 1F,J,K, 4E, 6A-D, S2C,G, and S4). Imaging of 723 

hippocampal neurons transfected with syp mOrange2 (Figure 4C) was performed in a modified 724 

extracellular solution (136-mM NaCl, 2.5 mM KCl, 2 mM CaCl2, 1.3 mM MgCl2, 10 mM glucose, 725 

726 

epifluorescence microscope, equipped with Zeiss AxioCam 506 camera controlled by ZEISS ZEN 727 

2 software, using EC Plan-Neofluar 40x oil immersion objective (NA 1.3) and a DsRED filter set 728 

(exciter 538-562, beam splitter 570, emitter 570-640). Cultures were stimulated with a train of 200 729 

AP delivered at 20 Hz (100 mA, 1 ms pulse width) and fluorescent images were acquired at 0.5 730 

Hz. Synaptic puncta responding to stimulation were identified by subtracting an average of the 731 

first several frames of the baseline from an average of several frames at the end of stimulation. 732 

The mean IF intensities were measured in ROIs with an identical size, placed automatically over 733 

each responding synapse using a self-written macro in ImageJ. The data traces were determined 734 

after removing the background by threshold subtraction and correction for bleaching, calculated 735 

from the bleaching of unresponsive boutons from the same coverslip. The half times for 736 

endocytosis (t1/2) were determined by applying a single exponential fit to the decay phases of the 737 

data traces using GraphPad Prism5 and the following equation: Ft=Fstim*exp(-t/tau), 738 

t1/2=ln(2)*tau, where Fstim is the fluorescence intensity at the end of stimulation and tau is the 739 

time constant for endocytosis. 740 

  741 
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Electrophysiology 742 

Whole-cell voltage clamp recordings were performed between 14 and 18 days in vitro (DIV) in 743 

autaptic neurons at room temperature. Ionic currents were acquired using a Digidata 1440A 744 

digitizer and a Multiclamp 700B amplifier under the control of Clampex X software (Axon 745 

instrument). Series resistance was set at 70% and only neurons with series resistances below 10 746 

 kHz and low-pass filtered at 3 kHz. Borosilicate 747 

 and filled with an intracellular solution 748 

containing (in mM): 136 KCl, 17.8 HEPES, 1 EGTA, 4.6 MgCl2, 4 Na2ATP, 0.3 Na2GTP, 12 749 

phosphocreatine, and 50 U/ml phosphocreatine kinase; 300 mOsm; pH 7.4. Autaptic neurons 750 

were continuously perfused with standard extracellular solution composed of (in mM): 140 NaCl, 751 

2.4 KCl, 10 HEPES, 10 glucose, 2 CaCl2, 4 MgCl2; 300 mOsm; pH 7.4. Spontaneous release was 752 

measured by recording mEPSC for 30 s at a holding potential of -70 mV in the presence of 3 mM 753 

kynurenic acid to detect false positive events and for the equal amount of time in extracellular 754 

solution. Data were filtered at 1 kHz and analyzed using template-based miniature event 755 

detection algorithms implemented in the AxoGraph X software. Action potential-evoked release 756 

-757 

releasable pool (RRP) size, 500 mM hypertonic sucrose added to standard extracellular solution, 758 

was applied for 5 s using a fast-flow system (Pyott and Rosenmund, 2002). For vesicular release 759 

probability (Pvr) calculations, the ratio of EPSC charge to RRP charge was determined. Short-760 

term plasticity was examined either by evoking 2 unclamped AP with 25 ms interval (40 Hz) or a 761 

train of 50 AP at an interval of 100 ms (10 Hz). All electrophysiological data were analyzed offline 762 

using Axograph X (Axograph Scientific). 763 

QUANTIFICATION AND STATISTICAL ANALYSIS 764 

All quantitative results are given as means ± standard errors of the mean (SEM) and normalised 765 

to the values of control. Statistical analyses were performed with Prism 7 and 8 (GraphPad 766 

Software, Inc.). The sample sizes (n numbers) were adjusted based on published studies using 767 

similar methodology. In the plots the interquartile range and median are depicted as boxes, 768 

minimal and maximal values as whiskers and + indicates mean. In Figure 2 F and G scatter dot 769 

plots show mean and 95% CI, and in 2 L and N bars indicate mean and SEM. Data points in 770 

curves in Figure 3L, 4C and E, 6A-D, are depicted as means and SEM. n numbers correspond to 771 

the number of cells (fixed cell imaging and electrophysiology experiments), individual coverslips 772 

(live cell imaging experiments), synaptic profiles (EM data), number of independent 773 
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immunoprecipitations (IP) or samples from independent animals (WB) and are indicated for each 774 

group in graphs. In graphs comparisons with the control are indicated above each box and, 775 

comparisons between the conditions are given as horizontal bars. The statistical tests were 776 

chosen after the distribution of the data sets was explored. The scoring and the statistical tests 777 

used to compute the P values are specified in the datatable. Significance is indicated using 778 

asterisks: nsP>0.05, *P<0.05, **P<0.01, ***P<0.001, **** P<0.0001. 779 

DATA AND CODE AVAILABILITY 780 

Requests for data and the scripts used for the main steps of the analysis of the pHluorin and 781 

STED data should be directed to the Lead Contact Anna Fejtova and will be made available upon 782 

reasonable request.  783 
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Figure legends 802 

Figure 1 803 

Knock down of CtBP1 reduces SV recycling. 804 

A) Representative images showing that the general neuronal morphology and the localization 805 
of synaptic markers are not changed in CtBP1KD neurons. 806 

B) Representative Western blots of samples from rat neurons transduced with viruses 807 
expressing shRNAs: scr, CtBP1KD944 and KD467 together with sypHy. The 808 
immunoreactivity for CtBP1 and CtBP2 and TCE total protein stain used as a loading 809 
control are shown. While notable downregulation of CtBP1 is evident in KD samples 810 
compared to scr, no changes were detected for CtBP2.  811 

C) Quantification of the Syt1 Ab uptake driven by basal network activity, depolarization with 812 
50 mM KCl or in the presence of 1 µM TTX in scr, and knockdown cultures.  813 

D) Representative images of Syt1 Ab uptake driven by basal neuronal network activity in 814 
control (scr), CtBP1KD944 and CtBP1KD467 cultures. 815 

E) Representative images of neurons expressing sypHy used to determine SV pool sizes. 816 
Cells were imaged in the presence of bafilomycin A1 during stimulation with 40 AP at 20 817 
Hz to release RRP. After a rest for 2 min a train of 200 AP at 20 Hz triggered the 818 
exocytosis of all release-competent vesicles (TRP). A final NH4Cl-pulse that visualized all 819 
released and non-released sypHy-positive vesicles (total pool: TP) was used for 820 
normalization. 821 

F) Average sypHy-fluorescence (FsypHy) traces reporting SV pool sizes from control and 822 
CtBP1KD neurons. RRP and TRP are given as fractions of TP.  823 

G) The mean values of RRP in scr, CtBP1KD944 and CtBP1KD467 did not differ significantly, 824 
but KD of CtBP1 leads to a significant reduction of TRP size. 825 

H) Images of sypHy showing SV exo-endocytosis at synapses in response to 200 AP at 5 Hz. 826 
The upper image shows the reference F of tdimer 2 before stimulation and the lower three 827 
the green F of sypHy before, during and after the stimulation.  828 

I-K) CtBP1 deletion results in slower retrieval of exocytosed SV. Peak-normalized sypHy 829 
responses to 200 AP at 5 Hz (I), 200 AP at 20 Hz (J) and 200 AP at 40 Hz (K) and respective 830 
single exponential fits of fluorescence decay are shown for each group. The estimated half 831 
times of endocytosis (t1/2) are plotted. 832 

Overlays are shown in the indicated colors. Scale bar is 10 µm in A and 5 µm in D, E and H.  833 

 834 

Figure 2  835 

Ultrastructural analysis of synaptic morphology and SV distribution in Ctbp1 KO and wild-836 
type (WT) neurons 837 

Synaptic profiles of glutamatergic spine synapses in high-pressure frozen and freeze substituted 838 
hippocampal organotypic slice cultures of Ctbp1 knock out (KO) and wild-type (WT) animals were 839 
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analysed in electron micrographs of 60 nm-thick ultrathin sections (A-G) and by 3D electron 840 
tomography (H-P). 841 

A and B) Electron micrographs of WT and respective Ctbp1 KO synaptic profiles. 842 
C to G) Mean values for number of SVs per synaptic profile(C), SV density(D), postsynaptic 843 

density (PSD) length (E), number of endosomes per synaptic profile(F,) and number of 844 
large dense-core vesicles (LDCVs) per synaptic profile(G).  845 

H and I) Electron tomography sub-volumes of wild-type (H) and Ctbp1 KO (I) synapses.  846 
J and K) 3D models of synaptic profiles including orthogonal views of the active zone (AZ, 847 

white; docked SVs, red; nonattached SVs, gray). 848 
L to P) Graphs show spatial distribution of SVs within 100 nm of the AZ (L), mean number of 849 

docked SVs (within 0 2 nm of the AZ) per AZ area (M), frequency distribution of SV 850 
diameters within 200 nm of the AZ (N), mean diameter of docked SVs (O) and mean 851 
number SV within 0 40 nm of the AZ per AZ area. 852 

Scale bars: 200 nm in B) and 100 nm in I)  853 

Figure 3  854 

Synaptic and nuclear CtBP1 have distinct effects on neurotransmission and their deletion 855 
leads to pronounced short-term depression  856 

A) Averaged normalized evoked EPSC amplitudes from control, CtBP1KD944, EGFP-CtBP1 857 
and YFP-CtBP2(NLS)-CtBP1 expressed in CtBP1KD944 neurons. 858 

B) Example traces showing spontaneous EPSCs from control, CtBP1KD944 neurons, or 859 
neurons expressing EGFP-CtBP1 and YFP-CtBP2(NLS)-CtBP1 on CtBP1KD background.  860 

C) Respective quantifications of average mEPSC amplitudes from the groups shown in (B).  861 
D) Respective quantifications of mEPSC frequency from the groups shown in (B).  862 
E) Autaptic neurons expressing the scrambled and CtBP1KD944 shRNA or the rescue 863 

variants: EGFP-CtBP1 or YFP-CtBP2(NLS)-CtBP1 on CtBP1KD944 background, were live 864 
stained for surface AMPA receptors and post fixation for synapsin to label presynapses. 865 
The overlays are shown in the indicated colors. Scale bar: 5µm 866 

F and G) Quantification of the experiment in E. IF intensity of surface expressed GluA at 867 
synapses does not differ between conditions, but CtBP1KD944 and expression of EGFP-868 
CtBP1 in CtBP1KD944 neurons increase the number of synapses. 869 

H and I) Typical responses to application of 500mOsmM sucrose for 10sec (H) and average 870 
normalized sizes of RRP (I).  871 
J) and K) Averaged normalized vesicular release probability (J) and PPR (K) in control, 872 
CtBP1KD944, and EGFP-CtBP1 and YFP-CtBP2(NLS)-CtBP1 expressed in CtBP1KD944 873 
neurons. 874 

L) Averaged normalized amplitudes of EPSC evoked by a train of stimuli at 10Hz. 875 
 876 
Figure 4  877 

Synaptic CtBP1 regulates SV recycling and short-term plasticity 878 

A) Syt1 Ab uptake was used to evaluate the efficacy of SV recycling in control, CtBP1KD944 879 
and CtBP1KD944 neurons expressing the rescue constructs: EGFP-CtBP1 and YFP-880 
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CtBP2(NLS)-CtBP1. Neurons were stained for synapsin to label synapses. Colored 881 
images represent overlays. Scale bar: 5µm. 882 

B) Expression of EGFP-CtBP1 rescues the Syt1 Ab uptake in CtBP1KD944 neurons up to 883 
80% of the control levels. The fission deficient mutant EGFP-CtBP1D355A has a reduced 884 
rescue capacity compared to EGFP-CtBP1. Expression of the nuclear rescue: YFP-885 
CtBP2(NLS)-CtBP1, does not compensate for the decreased Syt1 Ab uptake in 886 
CtBP1KD944. 887 

C) Average sypmOrange2 responses to 200 AP at 20 Hz from control, CtBP1KD944 or 888 
CtBP1KD944 neurons expressing EGFP-CtBP1, EGFP-CtBP1D355A or YFP-889 
CtBP2(NLS)-CtBP1.  890 

D) The endocytic half times, t1/2 from the experiment in (C) indicated that the rate of 891 
endocytosis was significantly lower in CtBP1KD944 compared to control. While expression 892 
of EGFP-CtBP1 in CtBP1KD944 cells rescued the endocytosis rate, expression of EGFP-893 
CtBP1D355A or YFP-CtBP2(NLS)-CtBP1 did not. 894 

E) Visualization of short-term depression of exocytosis in CtBP1KD944 and upon expression 895 
of rescue constructs. Plotted are average Syt1 Ab-CypHer responses to 40AP at 20Hz (a 896 
reference response), followed by a 60s rest period and 200 AP at 10 Hz in the presence of 897 
bafilomycin A1. The traces were normalized to the amplitudes of the reference responses 898 
in each condition.  899 

F) The absence of synaptic CtBP1 led to a reduction of the plateau fluorescence responses 900 
in experiment E.  901 

Figure 5  902 

CtBP1 and dynamin act at the same membrane domain in an independent but likely 903 
cooperative manner  904 

A) Orthographic views of the distribution of synaptic CtBP1 and the endocytic markers 905 
dynamin1, rab5, rab7, rab22 in neurons stimulated with 200 AP at 40 Hz. Punctate 906 

-localization was assessed as a distance 907 
from the CtBP1-labeled spots (synaptic distance) < 1 µm. 908 

B) The histogram shows the distribution of synaptic puncta co-localizing with CtBP1, binned 909 
according to the distance to CtBP1. A significantly smaller distance to CtBP1 is evident 910 
for dynamin1 (0-100 and 100-200 nm distance to CtBP1) compared to the other 911 
endosome markers. 912 

C)  Images of Syt1 Ab-CypHer uptake in control and CtBP1KD944 neurons untreated or 913 
treated with dynole 34-2 (C, 30 µM) for 1h. Live staining for surface GluA receptors was 914 
used to mark synapses. Overlays are shown as colored images.  915 

D)  Dynole 34-2 inhibits endocytosis in control and in CtBP1KD944 neurons. The residual 916 
endocytosis is significantly lower upon Dynole 34-2 application in CtBP1944KD 917 
suggesting an interaction of treatments.  918 

Scale bar is 0.1 µm in (A) and 5µm in (C).  919 

Figure 6  920 

CtBP1 promotes SV retrieval by activation of PLD1  921 
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A to D) Average sypHy responses to 200 AP at 20 Hz were recorded and quantification of 922 
t1/2 of recovery was performed upon treatment with BFA (A,B) or PLD1 inhibitor (C,D) 923 
in control (A,C) or CtBP1KD944 neurons (B,D). SV retrieval was significantly delayed in 924 
BFA-treated neurons (A) but not further affected in BFA treated CtBP1KD944 neurons 925 
(B). Treatment with a PLD1 inhibitor affected SV retrieval in control neurons (C) but not 926 
in CtBP1KD944 neurons (D). The same controls were plotted in (A) and (C) as well as 927 
in (B) and (D), respectively.  928 

E) The endocytic probe mCLING-DY654 was loaded by stimulation of control and 929 
CtBP1KD944 neurons with 200AP at 40Hz. Synapses were stained with synapsin Ab. 930 
Synapses in CtBP1KD944 neurons show a reduction in the mCLING labeling.  931 

F) Quantification of synaptic mCLING IF in (E). 932 
G) Orthographic views of synaptic EGFP-CtBP1 or EGFP-CtBP1S147A (S147A) expressed 933 

in CtBP1KD944 neurons and the endocytic probe mCLING-ATTO647N, loaded by 934 
stimulation with 200 AP at 40 Hz.  935 

H) Quantification of the mCLING intensities from EGFP-CtBP1- and S147A-labeled 936 
synapses in G. 937 

I) Correlation of mCLING intensities and the distances to EGFP-CtBP1. The intensity of 938 
the endocytic probe was inversely correlated with the distance to EGFP-CtBP1. 939 

J) The histogram shows the distribution of mCLING puncta co-localizing with EGFP-CtBP1 940 
or S147A, binned according to the distance mCLING-CtBP1. Note the shift in the 941 
histogram of EGFP-CtBP1 towards closer distances. 942 

Scale bar is 2 µm in E and 0.1 µm in G.  943 

Figure 7  944 

PAK1 phosphorylation mediates a switch in the association of CtBP1 with Bsn and PLD1  945 

A and B) Inhibition of Pak1 increases the binding of EGFP-CtBP1 to Bsn and reduces its 946 
binding to PLD1. (A) Co-IP with EGFP antibodies was performed from neuronal 947 
cultures expressing EGFP-CtBP1 and treated or not with the Pak1 inhibitor IPA3 948 
(50µM, 1h). (B) Quantification of the binding of Bsn to CtBP1.  949 

C and D) IP with EGFP antibodies was performed from whole cell lysates or P2 fractions of 950 
neuronal cultures expressing EGFP-CtBP1 and treated or not with the Pak1 inhibitor 951 
IPA3 (50µM for 1h). The Western blots were probed with a pan anti Ser/Thr Ab to 952 
visualize the phospho-Ser/Thr levels of CtBP1. Quantification of the Ser/Thr 953 
phosphorylation of CtBP1.  954 

E) The 2 color-STED images show a tighter co-localization of EGFP-CtBP1 with Bsn after 955 
stimulation with 200 AP at 40 Hz compared to cells at rest. EGFP-CtBP1S147A 956 
displays a tight co-localization with Bsn independently of neuronal activity.  957 

F) The histogram shows the relative distribution of Bsn puncta co-localizing with EGFP-958 
CtBP1 or S147A at rest and upon stimulation.  959 

Scale bar is 40 nm.  960 

Figure S1  961 
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Knock down of CtBP1 does not affect the overall expression of synaptic proteins and 962 
CtBP2 963 

A) Synaptic abundance of pre- (SV2B, synapsin, synaptophysin) and post-synaptic markers 964 
(homer1, GluA) does not change in CtBP1KD neurons.  965 

B) Quantification of the effects shown in A) 966 
C) Nuclear CtBP2 does not change in CtBP1KD neurons. 967 
D) Quantification of the effects shown in C) 968 

Scale bar is 5 µm in A, and 10 µm in C. 969 

Figure S2  970 

Ctbp1 KO synapses have a reduced rate of SV endocytosis and a lower number of release-971 
competent vesicles. 972 

A) Immunoblot detection of synaptic proteins in brain homogenates (H) and crude 973 
synaptosomes (P2) from WT and CtBP1 -tubulin are loading 974 
controls.  975 

B) Quantification of the effects shown in A) 976 
C) Average sypHy-fluorescence traces reporting SV pool sizes from neurons derived from 977 

WT and Ctbp1-/- mice.  978 
D) The mean values of RRP in WT and Ctbp1-/- did not differ significantly. 979 
E) Quantification of TRP size in WT and Ctbp1-/- . 980 
F) Neurons prepared from Ctbp1-/- animals and their WT siblings stained with an anti 981 

synapsin Ab, to label presynaptic terminals and pan anti GluA Ab to label 982 
postsynapses. Number of co-localizing synapsin and GluA puncta was slightly but not 983 
significantly increased in KO compared to control. The overlays are shown in the 984 
indicated colors. Scale bar: 5µm. 985 

G) Peak-normalized sypHy responses to 200 AP at 20Hz. The half times: t1/2 of 986 
endocytosis (bar graph) were smaller in WT neurons compared to Ctbp1-/- . 987 

 988 

Figure S3  989 

Expression of YFP-CtBP2(NLS)-CtBP1 reverts the effect of CtBP1KD944 on gene 990 
expression. 991 

A) Perspective views of 3D reconstructions of hippocampal neurons showing the synapto-992 
nuclear distribution of the endogenous CtBP1 and the expressed rescue variants. 993 
Synapsin staining labels presynaptic terminals; DAPI labels nuclei. Note that EGFP-CtBP1 994 
shows a decreased nuclear and an increased synaptic localization, whereas YFP-995 
CtBP2(NLS)-CtBP1 is expressed only in the nucleus. For better visualization several 996 
EGFP-CtBP1-positive spots were removed from the planes above the nucleus. Overlays 997 
are shown in the indicated colors. Scale bar: 7µm. 998 
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B and C) YFP-CtBP2(NLS)-CtBP1 counteracts the increased expression of BDNF and Arc in 999 
CtBP1KD944 neuronal cultures.  1000 

Figure S4 1001 

Frequency-dependent short-term synaptic depression at CtBP1-deficient synapses  1002 

A) and B) Average Syt1 Ab-CypHer responses to 50 AP at 20 Hz (a reference response), 1003 
followed by a 60s rest period and 200 AP at 5 Hz (A) or 40 Hz (B) in the presence of 80 1004 
nM folimycin. The traces were normalized to the amplitudes of the reference response. KD 1005 
of CtBP1 reduces the fluorescence responses to 200 AP at 5 Hz and even more 1006 
pronouncedly at 40 Hz. 1007 

 1008 

Figure S5 1009 

Effect of synaptic stimulation on the co-localization of CtBP1 with the endocytic markers 1010 
dynamin1, rab5, rab7, rab22 and the SV protein Syt1. 1011 

A - E) Cumulative plots showing the % of dynamin1, rab5, rab7, rab22 and Syt1 puncta co-1012 
localizing with CtBP1 in control (treated with 50µM APV and 10µM CNQX for 10 min) and 1013 
stimulated (200AP at 40Hz) neurons, binned according to the distance to the CtBP1 1014 
labeled spots.  1015 

 1016 

Table 1: Ultrastructural analysis of synaptic morphology 1017 

2D EM Analysis of Synaptic Morphology 1018 

 WT (N=3, n=159) KO (N=4, n=146)  
# of SVs per profile 80.72 ± 3.244 89.21 ± 3.721 P = 0.098 
terminal area ( x 0.01 µm2) 40.38 ± 1.182 41.19 ± 1.303 P = 0.845 
# SVs / 0.01 µm2 terminal area 1.993 ± 0.054 2.159 ± 0.064 P = 0.065 
PSD length (nm) 373.7 ± 9.261 379.4 ± 9.421 P = 0.627 
# of endosomes / terminal 0.843 ± 0.077 0.726 ± 0.082 P = 0.140 
# of LDCVs / terminal 0.151 ± 0.034 0.24 ± 0.043 P = 0.083 
N, number of animals; n, number of synaptic profiles; SV, synaptic vesicle; PSD, postsynaptic 1019 
density; LDCV, large dense-core vesicle. (red P-values = Mann-Whitney test, black P-values = 1020 
unpaired t-test) 1021 

3D Electron Tomographic Analysis of Synaptic Vesicle Pools 1022 

 WT (N=3, n=26) KO (N=4, n=25)  
# SVs within 0-2 nm of AZ 0.605 ± 0.092 0.876 ± 0.117 P = 0.075 
# SVs within 0-5 nm of AZ 0.797 ± 0.109 1.213 ± 0.142 *P = 0.043 
# SVs within 0-40 nm of AZ 1.821 ± 0.12 2.496 ± 0.168 **P = 0.002 
# SVs within 0-100 nm of AZ 5.876 ± 0.267 7.307 ± 0.382 **P = 0.003 
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# SVs within 0-200 nm of AZ 14.65 ± 0.817 15.31 ± 0.811 P = 0.572 
# SVs within 5-10 nm of AZ 0.214 ± 0.041 0.292 ± 0.07 P = 0.621 
# SVs within 10-20 nm of AZ 0.264 ± 0.058 0.162 ± 0.037 P = 0.354 
# SVs within 20-30 nm of AZ 0.213 ± 0.051 0.363 ± 0.069 P = 0.072 
# SVs within 30-40 nm of AZ 0.345 ± 0.052 0.465 ± 0.07 P = 0.170 
# SVs within 40-50 nm of AZ 0.531 ± 0.053 0.596 ± 0.081 P = 0.503 
# SVs within 50-100 nm of AZ 3.54 ± 0.196 4.215 ± 0.245 *P = 0.036 
# SVs within 100-150 nm of 
AZ 

4.408 ± 0.331 4.175 ± 0.251 P = 0.579 

# SVs within 150-200 nm of 
AZ 

4.34 ± 0.328 3.827 ± 0.291 P = 0.249 

AZ area (nm2) 40.900 ± 1.775 44.240 ± 2.276 P = 0.569 
SV diameter  
(SVs within 0-200 nm of AZ) 

44.95 ± 0.347 45.77 ± 0.38 P = 0.114 

SV diameter 
(SVs within 0-100 nm of AZ) 

44.98 ± 0.381 45.82 ± 0.426 P = 0.15 

N, number of animals; n, number of tomograms; SV, synaptic vesicle; AZ, active zone. SV 1023 
numbers within a certain distance of the AZ are normalized to 0.01 µm2 of AZ area. Values 1024 
indicate mean ± SEM. (red P-values = Mann-Whitney test, black P-values = unpaired t-test) 1025 

 1026 

 WT (n=63) KO (n=100)  
SV diameter 
(docked SVs, 0-2 nm of AZ) 

44.17 ± 0.64 46.08 ± 0.485 *P = 0.012 

n, number of docked SVs averaged over all tomograms of a given genotype 1027 

 1028 

Table 2: Electrophysiological analysis of autaptic cultures from CtBP1944KD and scr and upon 1029 

expression of selective synaptic or nuclear rescue constructs 1030 

 
SC 

Kruskal-Wallis 

test 

CtBP1KD9

44 

Kruskal-

Wallis test 

EGFP-

CtBP1 

Kruskal-

Wallis test 

YFP-

CtBP2(NLS) 

-CtBP1 

Kruskal-Wallis 

test 

mEPSC 

charge 

(fC) 

110.5  

± 4.2 

(n=69/5) 

 

CtBP1KD944 

P>0.99 

104.4  

± 4.1 

(n=70/5) 

 

SC 

P>0.99 

119.4  

± 9.8 

(n=64/5) 

 

SC 

P>0.99 

110.3  

± 4.1 

(n=62/5) 

 

SC 

P>0.99 

EGFP-CtBP1 

P>0.99 

EGFP-

CtBP1 

P>0.99 

CtBP1KD94

4 

P>0.99 

CtBP1KD944 

 P>0.99 

YFP-

CtBP2(NLS)-

CtBP1 

P>0.99 

YFP-

CtBP2(NLS)

-CtBP1 

P>0.99 

YFP-

CtBP2(NLS)

-CtBP1 

P>0.99 

EGFP-CtBP1  

P>0.99 

EPSC 35.4 CtBP1KD944 55.2 SC 78.1 SC 51.3 SC 
P=0.072 
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Charge 

(pC) 

± 4.5 

(n=77/5) 

P=0.0018 ± 5.9 

(n=72/5) 

P=0.0018 ± 8.5 

(n=62/5) 

<0.0001 ± 6.2 

(n=63/5) 
EGFP-CtBP1 

P<0.0001 

EGFP-

CtBP1 

P=0.4137 

CtBP1KD94

4 

P=0.4137 

CtBP1KD944 

P>0.99 

YFP-

CtBP2(NLS)-

CtBP1 

P=0.072 

YFP-

CtBP2(NLS)

-CtBP1 

P>0.99 

YFP-

CtBP2(NLS)

-CtBP1 

P=0.0436 

EGFP-CtBP1 

P=0.0436 

Pvr 

(%) 

7.0 

± 0.5 

(n=73/5) 

CtBP1KD944 

P<0.0001 

15.8 

± 0.9 

(n=64/5) 

SC 

P<0.0001 

14.2 

± 1.1 

(n=52/5) 

SC 

P<0.0001 

11.6 

± 1.0 

(n=62/5) 

SC 

 P>0.006 

EGFP-CtBP1 

P<0.0001 

EGFP-

CtBP1 

P>0.999 

CtBP1KD94

4 

P>0.999 

CtBP1KD944 

P=0.011 

YFP-

CtBP2(NLS)-

CtBP1 

P>0.006 

YFP-

CtBP2(NLS)

-CtBP1 

P=0.011 

YFP-

CtBP2(NLS)

-CtBP1 

P=0.1925 

EGFP-CtBP1 

P=0.1925 

n, number of neurons / independent cultures analyzed 1031 
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Summary (150 words) Compensatory endocytosis of released synaptic vesicles (SVs) relies on 25 

coordinated signaling at the lipid-protein interface. Here, we address the synaptic function of C-26 
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terminal binding protein 1 (CtBP1), a ubiquitous regulator of gene expression and membrane 27 

trafficking, in cultured hippocampal neurons. In the absence of CtBP1 synapses formed in higher 28 

density and showed changes in SV distribution and size. The increased basal neurotransmission 29 

and enhanced synaptic depression could be attributed to a higher vesicular release probability 30 

and a smaller fraction of release-competent SVs, respectively. Rescue experiments with 31 

specifically targeted constructs indicated that while synaptogenesis and release probability were 32 

controlled by nuclear CtBP1, the efficient recycling of SVs relied on its synaptic expression. The 33 

ability of presynaptic CtBP1 to facilitate compensatory endocytosis depended on its membrane 34 

fission activity and the activation of the lipid-metabolizing enzyme PLD1. Thus, CtBP1 regulates 35 

SV recycling by promoting a permissive lipid environment for compensatory endocytosis.  36 

Keywords: (up to 10) 37 

Compensatory endocytosis, CtBP1, Bassoon, PLD1, synaptic vesicle recycling, membrane 38 

fission, short-term plasticity, synaptic vesicle pools, presynapse 39 

Introduction: 40 

C-terminal binding protein 1 (CtBP1) is a ubiquitously expressed dual-function protein that acts as 41 

a transcriptional corepressor in the cell nucleus and as a regulator of membrane fission in the 42 

cytoplasm (Chinnadurai, 2009; Valente et al., 2013). It is expressed in most types of neurons, 43 

where it shows a distinct localization to nuclei and presynapses (Hubler et al., 2012; tom Dieck et 44 

al., 2005). Presynaptic CtBP1 is localized in the vicinity of the active zone via its direct binding to 45 

two large, highly homologous active zone scaffolding proteins: bassoon (Bsn) and piccolo (Pclo) 46 

(Ivanova et al., 2015; tom Dieck et al., 2005). A dynamic synapto-nuclear shuttling of CtBP1, 47 

induced by changes in its affinity to Bsn and regulated by neuronal activity and cellular 48 

NAD/NADH ratio was shown to control the expression of a variety of neuroplasticity-related genes 49 

(Ivanova et al., 2016; Ivanova et al., 2015). While the importance of CtBP1-dependent 50 

transcriptional regulation of neuroplasticity genes emerged from recent studies (Garriga-Canut et 51 

al., 2006; Ivanova et al., 2016; Ivanova et al., 2015), the role of synaptic CtBP1 is still elusive. 52 

Here we hypothesize that in addition to being implicated in the remote control of gene expression, 53 

synaptic CtBP1 might directly contribute to neurotransmitter release and SV recycling. The 54 

involvement of CtBP1 in various membrane fission processes at the Golgi and plasma membrane 55 

in non-neuronal cells is in support of this view (Valente et al., 2013). Although the mechanism of 56 

CtBP1-mediated fission remains controversial, an increasing body of evidence suggests that it 57 

induces formation of vesicular carriers by recruiting and orchestrating numerous enzymes that 58 
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promote local lipid reorganization leading to membrane bending (Valente et al., 2013). This is 59 

mechanistically distinct from the principle of torsional force utilized in dynamin-mediated fission, 60 

most commonly implied in SV recycling (Antonny et al., 2016; Renard et al., 2018). Despite the 61 

well-established role of dynamin in SV fission, recent findings suggest that dynamin-independent 62 

forms of endocytosis might occur at hippocampal synapses (Gan and Watanabe, 2018; Wu et al., 63 

2014). Moreover, a crosstalk and cooperativity between dynamin-mediated fission, actin 64 

cytoskeleton-mediated vesicle reformation and lipid reorganization by lipid-modifying enzymes in 65 

the execution of SV recycling were recently suggested (Puchkov and Haucke, 2013; Soykan et 66 

al., 2017; Wu et al., 2016).  67 

In this study, we investigate the potential role of synaptic CtBP1 in the regulation of SV fusion and 68 

recycling. Using knock down (KD), knock out (KO) and complementation approaches we 69 

demonstrate that while loss of nuclear CtBP1 expression increases synaptogenesis and release 70 

probability of SVs, the depletion of synaptic CtBP1 leads to defects in SV retrieval, accompanied 71 

by an enlargement of the docked synaptic vesicles and pronounced synaptic depression during 72 

sustained neurotransmission. Functional experiments and super-resolution imaging indicate that 73 

synaptic CtBP1 acts at the same membrane domain as dynamin to promote SV recycling. Our 74 

results revealed a crucial requirement for CtBP1-mediated membrane fission and the activity of 75 

Phospholipase D1 (PLD1) in this process. Finally, we show that CtBP1 phosphorylation by the 76 

signaling kinase p21 (RAC1) activated kinase 1 (Pak1) provides a molecular switch controlling its 77 

re-distribution from the active zone protein Bsn to the endocytic effector PLD1, thus fine-tuning its 78 

membrane trafficking activity and potentially linking presynaptic exo- and endocytic processes. 79 

Results: 80 

CtBP1 contributes to synaptic vesicle retrieval and regulates the size of the total recycling 81 

pool 82 

To assess whether the absence of CtBP1 affects synaptic structure and function we used a 83 

previously established RNA-interference approach in cultured hippocampal neurons (Ivanova et 84 

al., 2015). Significant downregulation of CtBP1, but no obvious differences in the morphology and 85 

the expression of pre- and post-synaptic markers or CtBP2, a close homologue of CtBP1, were 86 

observed between controls expressing scrambled shRNA (scr) and CtBP1 knock down 87 

(CtBP1KD) neurons expressing target shRNAs: CtBP1KD944 or CtBP1KD467 (Figure1A,B;, 88 

Figure S1A-D). Likewise, no regulation of synaptic proteins and CtBP2 were observed in 89 

homogenates or P2 fractions obtained from brains of CtBP1 knock out animals (Figure S2A,B). 90 
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To assess SV turnover in the absence of CtBP1 we applied a fluorophore-coupled antibody 91 

recognizing the lumenal domain of the integral SV protein synaptotagmin 1 (Syt1 Ab) to living 92 

neurons. Syt1 Ab binds to its epitope which is transiently accessible upon SV fusion with the 93 

plasma membrane until its internalization during compensatory endocytosis. The fluorescence 94 

intensity of the internalized Syt1 Ab provides an estimate of SV recycling at individual synapses 95 

(Kraszewski et al., 1995; Lazarevic et al., 2011). The Syt1 Ab uptake driven by endogenous 96 

activity (network activity-driven release) was reduced by about 50% in CtBP1KD neurons as 97 

compared to controls (30 min incubation; Figure 1C,D). To address the potential contribution of 98 

an increased neuronal network activity to this phenotype and isolate presynaptic effects, we also 99 

measured the spontaneous (i.e. action potential-independent) SV recycling within 30 min in the 100 

presence of TTX and the pool of all fusion-competent vesicles (total recycling pool, TRP) upon 101 

brief depolarization with 50 mM KCl. In both conditions Syt1 Ab uptake was strongly reduced 102 

(~50%) in CtBP1KD (Figure 1C), indicating an impairment in both evoked and spontaneous SV 103 

recycling at CtBP1-deficient synapses. 104 

To monitor SV recycling by an alternative approach we expressed scr and CtBP1KD944 and 105 

CtBP1KD467 from a bicistronic vector together with ratio:sypHy (sypHy) (Figure 1E). SypHy is an 106 

indicator composed of the SV protein synaptophysin 1, fused to pH-sensitive GFP in one of the 107 

luminal domains and tdimer 2 in the cytoplasmic domain which allows its visualization prior to 108 

stimulation (Granseth et al., 2006; Rose et al., 2013). The fluorescence of sypHy increases upon 109 

SV exocytosis and decays following SV endocytosis and re-acidification. To determine the sizes 110 

of the readily releasable pool (RRP) and the recycling pool (RP) we utilized bafilomycin A1, a 111 

blocker of the vesicular proton pump that prevents the re-acidification of endocytosed SVs and 112 

thus the decline of sypHy fluorescence (Burrone et al., 2006). Exocytosis of the SVs from RRP 113 

and RP was evoked by the sequential delivery of 40 and 200 action potentials (AP) at 20 Hz 114 

(Figure 1E-G). In CtBP1KD neurons around 14% of the sypHy positive SVs fused upon 115 

stimulation with 40 AP at 20 Hz (i.e. RRP), which was comparable to control neurons. The 116 

delivery of additional 200 AP triggered exocytosis of ~50% of all sypHy-labeled SVs in controls, 117 

but only ~30% in CtBP1KD neurons, indicating a role of CtBP1 in the control of TRP (comprising 118 

RRP and RP). Alkalization with ammonium chloride, which de-quenches all sypHy-positive SVs, 119 

revealed no differences in its expression between CtBP1KD and control neurons. (Figure 1E-G) 120 

An analogous analysis performed in cultured neurons isolated from constitutive Ctbp1 KO mice 121 

recapitulated the results of the KD approach and confirmed the significant reduction of TRP in 122 

CtBP1-deficient synapses (Figure S2C-E). 123 
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To assess potential changes in the kinetics of SV exo-endocytosis in the absence of CtBP1, we 124 

monitored sypHy responses evoked by a train of 200 AP at 5, 20 or 40 Hz in neurons expressing 125 

CtBP1KD944, CtBP1KD467 or scrambled shRNA (Figure 1H-K). Several stimulation rates were 126 

tested since distinct molecular mechanisms have been proposed to mediate SV retrieval at 127 

different stimulation frequencies (Cousin, 2017; Kononenko and Haucke, 2015; Soykan et al., 128 

2017). Whereas the time course of exocytosis was indistinguishable between CtBP1KD and 129 

control groups, the sypHy fluorescence decay was significantly slower in CtBP1KD neurons at all 130 

frequencies tested (Figure 1I-K) suggesting a role of CtBP1 in SV endocytosis. Analogous 131 

experiments in cultured neurons from constitutive Ctbp1 KO mice confirmed this conclusion 132 

(Figure S2G). Taken together, these results suggest that CtBP1 contributes to SV retrieval at a 133 

broad range of neuronal firing frequencies and is specifically required for maintaining the size of 134 

TRP during sustained neuronal activity. 135 

Deletion of CtBP1 induces changes in SV size and distribution  136 

Next, we performed an ultrastructural analysis of small glutamatergic spine synapses in 4-5 137 

weeks old cultured hippocampal slices obtained from Ctbp1 KO mice and their wild-type (WT) 138 

siblings. A combination of rapid cryo-fixation, automated freeze substitution, and 3D-electron 139 

tomographic analysis was designed to accurately reveal vesicular organization at presynaptic 140 

active zones (AZ) with nanometer precision, while circumventing the introduction of morphological 141 

artefacts associated with conventional electron microscopy preparation methods requiring 142 

dehydration of the tissue at room temperature (Korogod et al., 2015; Murk et al., 2003). An 143 

analysis of gross synaptic morphology and the number of SVs in individual presynaptic 144 

glutamatergic terminals revealed no differences between Ctbp1 KO and WT synaptic profiles 145 

(Figure 2A G). Electron tomographic analysis, however, revealed changes in the distribution of 146 

SVs in KO versus WT synapses (Figure 2H-K). The KO synaptic profiles showed a significant 147 

increase in the number of membrane-proximal SVs (within 0-5, 0-40, 50-100 and 0-100 nm of the 148 

AZ, Figure 2L, P and Table 1). It is important to note that no statistically significant differences in 149 

the number of vesicles within 0-2nm of the AZ were observed (Figure 2M), which is the 150 

morphological correlate of RRP. Analyses of individual SVs revealed a small, but significant 151 

increase in the diameter of docked SVs (Figure 2O), however no change in SV size was seen 152 

when comparing all synaptic vesicles within 0-200 nm (Table1). Altogether, these data suggest 153 

that loss of CtBP1 does not affect the overall number of SVs in the presynaptic terminals, but 154 

triggers their redistribution from membrane-distal to membrane-proximal areas. They also indicate 155 

that CtBP1 regulates the size uniformity of docked SVs. 156 
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Distinct roles of nuclear and synaptic CtBP1 in neurotransmission 157 

Since we observed changes in the diameter of docked SVs and the size of TRP we next 158 

determined the effect of CtBP1 depletion on neurotransmission. We first compared the AP-159 

evoked excitatory postsynaptic currents (EPSCs) in cultures of autaptic hippocampal neurons 160 

transduced with CtBP1KD944 shRNA or scrambled shRNA as a control. Unexpectedly, 161 

CtBP1KD944 neurons exhibited greater amplitudes of EPSC compared to controls (Figure 3A). 162 

To examine whether the increase in EPSC amplitude reflected an increase in the amount of 163 

glutamate loaded into SVs or changes in postsynaptic receptors we analyzed mEPSCs, which 164

represent single fusion events. Neither the amplitudes nor the charges of mEPSCs were affected 165 

by CtBP1-depletion indicating that the observed increase in EPSC amplitude cannot be attributed 166 

to any major changes in vesicular neurotransmitter content or postsynaptic properties (Figure 167 

3B,C, Table 2). In support of the latter conclusion, quantitative live immunolabeling of autaptic 168 

neurons with an antibody recognizing the extracellular epitope of GluAs did not uncover any 169 

significant differences in the surface expression of AMPA receptors between the groups (Figure 170 

3E,F). The mEPSC frequency was not significantly altered in CtBP1944KD neurons (Figure 3D). 171 

However, the number of morphological synapses assessed as a number of co-localizing 172 

synapsin-GluA puncta in CtBP1KD944 neurons was slightly higher suggesting increased 173 

synaptogenesis in the absence of CtBP1 (Figure 3E,G). The increased synapse number might 174 

contribute, at least in part, to the increase of EPSC amplitude observed in these neurons.  175 

Next we measured postsynaptic current evoked by application of hypertonic sucrose, leading to 176 

the release of all docked SVs (RRP) (Rosenmund and Stevens, 1996). We detected unchanged 177 

sucrose-evoked currents (Figure 3H,I), which is in line with unchanged RRP measured by sypHy 178 

imaging (Figure 1E-G) and with the unchanged number of morphologically docked SVs (Figure 179 

2M). The unchanged total RRP charge, but significantly higher EPSC charge evoked by an 180 

injection of a single AP implies an increased mean vesicular release probability (Pvr, Figure 3J). 181 

Increased Pvr is predictive of an increased synaptic transmission upon isolated stimuli but leads 182 

to an enhanced short-term depression upon repeated stimulation. To explore this possibility, we 183 

recorded synaptic responses induced by a 25 ms spaced pair of APs (Figure 3K). In line with the 184 

elevated Pvr, the paired pulse ratio (i.e. the ratio of the peak amplitude of the second to the first 185 

evoked EPSC; PPR), was significantly decreased in CtBP1944KD neurons, confirming a higher 186 

degree of synaptic depression. We also analyzed the depression of neurotransmission during 187 

sustained neuronal activity by recording the EPSCs evoked by a train of 50 stimuli at 10 Hz 188 

(Figure 3L). At this frequency only minor depression of EPSC amplitudes was evident in controls 189 
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(scr), while a pronounced rundown of neurotransmission was measured upon depletion of CtBP1 190 

(CtBP1KD944), which is in line with the high initial Pvr and increased PPR measured in 191 

CtBP1KD944 neurons. Thus, depletion of CtBP1 promotes synaptogenesis and elevates Pvr 192 

resulting in increased evoked neurotransmission and contributing to the strongly enhanced short-193 

term depression. 194 

We have previously shown that nuclear CtBP1 acts as a transcriptional corepressor and regulates 195 

the expression of plasticity-related genes which might affect synaptogenesis and 196 

neurotransmission (Ivanova et al., 2015). To discriminate between the effects of nuclear and 197

synaptic CtBP1 on synaptic transmission, we expressed CtBP1944KD together with RNAi-198 

resistant variants of CtBP1 that were sorted predominantly to the synapses (EGFP-CtBP1) or 199 

only to the nucleus (YFP-CtBP2(NLS)-CtBP1). In EGFP-CtBP1, the N-terminal fusion of EGFP 200 

interferes with its nuclear localization, while it leaves the synaptic targeting unaffected (Figure 201 

S3A) (Ivanova et al., 2015; Verger et al., 2006). The chimeric protein YFP-CtBP2(NLS)-CtBP1 202 

which bears the NLS signal of CtBP2, the paralogue of CtBP1 in vertebrates, fused to almost full 203 

length CtBP1, showed a restricted nuclear localization (Figure S3A) (Verger et al., 2006). While 204 

expression of synaptic EGFP-CtBP1 on a KD background led to a further increase of EPSC 205 

amplitude, expression of nuclear YFP-CtBP2(NLS)-CtBP1 fully rescued the EPSC amplitude 206 

(Figure 3A). These data indicate that the increased size of the evoked response in CtBP1KD944 207 

neurons is a result of the depletion of the nuclear rather than the synaptic pool of CtBP1. 208 

Similarly, the increased number of morphological synapses as well as Pvr and PPR were 209 

substantially normalized upon expression of nuclear YFP-CtBP2(NLS)-CtBP1, indicating that 210 

depletion of nuclear CtBP1 leads to increased synaptogenesis and elevated Pvr (Figure 3G,J,K). 211 

Expression of YFP-CtBP2(NLS)-CtBP1 also normalized the altered expression of the immediate 212 

early gene Arc and neurotrophin BDNF in CtBP1KD944 neurons (Figure S3B,C), suggesting a 213 

link between CtBP1-controlled gene expression and the regulation of synaptic efficacy. We 214 

observed an intermediate increase in Pvr and PPR upon expression of synaptic EGFP-CtBP1 215 

(Figure 3G,J,K), which further supports the notion that nuclear and not synaptic CtBP1 controls 216 

synapse formation and/or maintenance and Pvr. The expression of EGFP-CtBP1 also led to an 217 

increase in mEPSC frequency, which might be a consequence of the concomitant strong 218 

elevation in synapse number and Pvr (Figure 3D,J,K).  219 

To our surprise, the expression of the nuclear construct YFP-CtBP2(NLS)-CtBP1 in CtBP1KD944 220 

neurons that normalized the evoked neurotransmission and significantly decreased Pvr assessed 221 

upon single or paired-pulse stimulation (Figure 3A,J,K), did not revert the strikingly elevated 222 
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depression during the train of 50 stimuli at 10Hz (Figure 3L). In contrast, expression of synaptic 223 

EGFP-CtBP1 in CtBP1KD944, which further enhanced the evoked neurotransmission and left the 224 

increased Pvr largely unaffected, increased the steady state response to 10Hz stimulation by 225 

about 7% (of initial response) compared to CtBP1KD944 (Figure 3L). This is comparable with 226 

data obtained at calyx of held, where compete block of endocytosis decreased steady state 227 

response by 10% (Hosoi et al., 2009). Taken together, the complementation experiments 228 

revealed that nuclear CtBP1 has an inhibitory effect on basal neurotransmission due to its 229 

negative effect on synapse number and SV fusion competency. Interestingly, the nuclear 230 

expression of CtBP1 (YFP-CtBP2(NLS)-CtBP1) left the enhanced depression of 231 

neurotransmission during repetitive stimulation unaffected, while expression of synaptic EGFP-232 

CtBP1 ameliorated the effect of CtBP1 depletion. Since, the synaptic rundown during repetitive 233 

stimulation is determined not only by the Pvr, but also by the size and refill capacity of the total 234 

recycling pool of SVs, we next addressed the involvement of synaptic and nuclear CtBP1 in SV 235 

retrieval in the following imaging experiments. 236 

Synaptic CtBP1 is required for normal SV recycling and short-term plasticity of release. 237 

To directly determine the contribution of synaptic and nuclear CtBP1 to the defect in the retrieval 238 

of the fused SVs observed in CtBP1KD neurons we performed imaging experiments in neurons, 239 

where CtBP1 KD was complemented by expression of synaptic or nuclear rescue constructs. 240 

Synaptically-localized EGFP-CtBP1 expressed on CtBP1KD944 background led to ~80% 241 

restoration of Syt1 Ab uptake driven by network activity. In contrast, the expression of nuclear 242 

YFP-CtBP12(NLS)-CtBP1 failed to rescue Syt1 Ab uptake in CtBP1KD944 neurons (Figure 4A, 243 

B). In addition, the expression of EGFP-CtBP1 with aspartate 355-to-alanine mutation (D355A), 244 

which impairs the fission activities of CtBP1 (Bonazzi et al., 2005), also failed to restore the Syt1 245 

Ab uptake in CtBP1KD neurons (Figure 4A,B), suggesting that the function of CtBP1 in fission is 246 

required for normal SV recycling. Next, we tested the ability of synaptic vs. nuclear CtBP1 247 

expression to rescue the aberrant exo-endocytosis observed upon depletion of endogenous 248 

CtBP1 (Figure 1H-K) To this end we used a sensor composed of synaptophysin fused to the 249 

monomeric, orange pH-sensitive mOrange2 (sypmOr2), which we co-expressed with the EGFP 250 

and YFP-labeled rescue constructs (Figure 4C,D). The fluorescence recovery after stimulation 251 

with 200 APs at 20 Hz was significantly retarded in CtBP1KD944: it did not reach full recovery 252 

during the time of imaging and had a greater recovery halftime compared to the controls (Figure 253 

4C,D). The expression of synaptic EGFP-CtBP1 on CtBP1KD944 background fully rescued the 254 

normal SV retrieval, while nuclear YFP-CtBP2(NLS)-CtBP1 or the fission mutant EGFP-255 
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CtBP1D355A failed to do so (Figure 4C,D). Altogether, these data indicate that synaptic 256 

localization and intact fission activities of CtBP1 are crucial for its role in SV retrieval. 257 

To re-evaluate the altered short-term plasticity measured by the electrophysiological recordings of 258 

CtBP1-depleted autaptic neurons (Figure 3L), we monitored the exocytosis of endogenous syt1 259 

during a train of 200 AP at 10 Hz using an antibody against its luminal domain coupled to 260 

CypHer5E (Syt1 Ab-CypHer). CypHer5E is a pH sensitive dye with maximal fluorescence at 261 

acidic pH in the vesicle lumen and fluorescence decline upon SV exocytosis (Hua et al., 2011). 262 

Experiments were performed in the presence of bafilomycin A1 (Figure 4E) or folimycin (Figure 263

S4) to block SV reacidification and thus visualize net SV fusion. To normalize for potential 264 

differences in the initial release probability and thus uncover the contribution of SV retrieval, the 265 

response amplitudes after a reference train of 40 APs at 20 Hz, which leads to the release of 266 

RRP (unchanged between control and CtBP1KD, Figures 1G, 2I,M 3H,I), were used for 267 

normalization as described previously (Hua et al., 2013). This reference pulse was followed by a 268 

brief recovery period and a test stimulus of 200 AP at 10 Hz. The amplitudes of the fluorescence 269 

responses to 200 AP were strongly reduced in CtBP1KD944 compared to the control for stimuli 270 

delivered at 5, 10 or 40Hz (Figure 4E,F and S4A,B). The expression of YFP-CtBP2(NLS)-CtBP1 271 

on CtBP1KD944 background did not improve this decrease, while the responses in KD neurons 272 

expressing EGFP-CtBP1 construct were not significantly different from control (Figure 4E,F). 273 

These experiments further supported the view that synaptic CtBP1 is required for efficient SV 274 

recycling during sustained neuronal activity.  275 

Dynamin-dependent SV recycling is unaffected in CtBP1-deficient neurons. 276 

The GTPase dynamin plays a key role in the reformation of SVs by catalyzing the fission of SV 277 

membranes from the plasma membrane and endosomal structures (Gan and Watanabe, 2018; 278 

Kononenko and Haucke, 2015). In non-neuronal cells, CtBP1 was described as an accessory 279 

protein in the assembly of dynamin-independent fission machinery, which includes molecules like 280 

ADP ribosylation factor (Arf), phospholipase D (PLD) and lysophosphatidic acid acyltransferase 281 

(LPAAT) (Haga et al., 2009; Pagliuso et al., 2016; Valente et al., 2012). To investigate a possible 282 

link of CtBP1 to the established presynaptic endocytic machinery, we assessed the nanoscale 283 

localization of CtBP1 in respect to other membranous structures implicated in SV recycling. To 284 

this end, we performed super-resolution dual-color STED microscopy of neurons labeled with 285 

antibodies against CtBP1, the SV protein Syt1 and several endocytic markers followed by co-286 

localization modeling. Dynamin1 labeling was used to visualize the classic endocytic machinery 287 
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(Figure 5A). Since many of the components of the CtBP1-associated fission machinery were 288 

shown to coordinate the endosomal trafficking of membrane proteins, we also labeled the 289 

neurons with markers for early (rab5), late (rab7) and recycling (rab22) endosomes (Figure 5A). 290 

Prior to staining, neuronal cultures were first silenced with APV ((2R)-amino-5-phosphonovaleric 291 

acid; (2R)-amino-5-phosphonopentanoate) and CNQX (6-cyano-7-nitroquinoxaline-2,3-dione) for 292 

10 minutes, in order to reduce the intersynaptic variability induced by the endogenous network 293 

activity. We analyzed the distance of CtBP1 to other markers at rest and also monitored the co-294 

localization in cells fixed 30 seconds after stimulation with 200 AP at 40 Hz (Figure S5). Overall, 295 

CtBP1 localized in the proximity (0-200 nm) of dynamin1 and Syt1, while all endosome markers 296 

we probed for were much more distant (100-500 nm) (Figure 5A,B and S5A-E). Synaptic 297 

stimulation did not affect the co-localization of CtBP1 with dynamin1 and Syt1 but led to a 298 

significant increase in the distance between CtBP1 and endosome markers rab5 and rab7, but 299 

not rab22 (Figure S5A-E). Thus, CtBP1 likely acts at the membrane domain marked by Syt1 and 300 

dynamin1 indicating its potential role in the retrieval of exocytosed SVs. The poor baseline co-301 

localization of CtBP1 with the endosomal markers rab5, rab7 and rab22, and subsequent 302 

increase of distance upon neuronal stimulation, suggests a role of CtBP1 in the formation of 303 

vesicular carriers rather than its constitutive association with intracellular membranous structures.  304 

Given the fact that CtBP1 was reported to regulate membrane trafficking in dynamin-independent 305 

exocytic and endocytic pathways (Bonazzi et al., 2005), the high synaptic co-localization with 306 

dynamin1 was unexpected. Therefore, in order to test whether CtBP1 contributes to the 307 

presynaptic dynamin-dependent endocytosis, we quantified the Syt1 Ab-CypHer uptake in control 308 

and CtBP1KD944 neurons treated with the potent dynamin inhibitors dynole 34-2 (Figure 5C,D). 309 

As inhibition of dynamin increases the membrane stranding of SV proteins due to an impaired 310 

retrieval (Raimondi et al., 2011) we used Syt1 Ab-CypHer uptake to determine specifically the 311 

fraction of Syt1 retrieved through dynamin-independent endocytosis. Dynole 34-2 had a 312 

comparable effect in control and in CtBP1KD944 neurons, and reduced the Syt1 Ab-CypHer Ab 313 

uptake by more than 80% (Figure 5D). The large effect of dynamin inhibition in both conditions 314 

confirms the principal requirement of dynamin for efficient SV retrieval at the presynapse. 315 

However, as the effects of CtBP1KD and dynole 34-2 were not completely additive but rather 316 

cooperative and considering the high degree of co-localization observed for CtBP1 and dynamin, 317 

we propose that despite their involvement in independent machineries they might act in concert at 318 

the same membrane domain to mediate effective SV retrieval. 319 

CtBP1 promotes retrieval of SVs by activation of presynaptic PLD1 320 
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Given the established role of CtBP1 in membrane trafficking in non-neuronal cells, we 321 

hypothesized a role of CtBP1-based fission machinery in SV recycling. To test this hypothesis, we 322 

first treated control and CtBP1-depleted neurons with brefeldin A (BFA), a fungal antibiotic 323 

interfering with the intracellular membrane trafficking. BFA targets several proteins involved in 324 

membrane trafficking, including CtBP1. It induces ADP-ribosylation of CtBP1 (also known as 325 

BFA-ADP-ribosylation substrate, shortly BARS), which interferes with the assembly of CtBP1-326 

based fission complex and results in inhibition of endocytic vesicle formation (Colanzi et al., 2013; 327 

Spano et al., 1999). We applied BFA (2.5µM) only five minutes prior to and during the image 328 

acquisition, which we reasoned is a too short time period to influence synaptic function by 329 

changes in gene expression or soma-to-synapse trafficking. Thus, the effect of BFA treatment 330 

more likely reflected an acute inhibition of CtBP1 and the associated fission machinery at the 331 

presynapse. In agreement with previous reports (Kononenko et al., 2013; Park et al., 2016) (but 332 

see (Kim and Ryan, 2009) for lack of effect of BFA on vGLUT-pHluorin), BFA treatment affected 333 

significantly the post-stimulus fluorescence decay of sypHy in control neurons (Figure 6A) 334 

indicating that BFA slows down the retrieval of exocytosed SVs. In contrast, the sypHy 335 

fluorescence decay was not further affected by BFA in CtBP1KD neurons (Figure 6B), suggesting 336 

that CtBP1-based fission machinery mediates to a great extent the effect of BFA. 337 

The precise molecular mechanism of CtBP1-mediated membrane trafficking is still not fully 338 

understood. It was suggested that CtBP1-based fission complex drives membrane budding and 339 

fission by catalyzing the remodeling of membrane lipids, which leads to formation of fission-prone 340 

membrane domains. In non-neuronal cells, CtBP1 was shown to interact and activate the 341 

phosphodiesterase activity of phospholipase D1 (PLD1), an enzyme catalyzing the conversion of 342 

phosphatidylcholine (PC) into the fusogenic phosphatidic acid (PA) (Donaldson, 2009; Haga et 343 

al., 2009; Raben and Barber, 2017). Although PLD1 was shown to play a role in the control of 344 

neurotransmitter release in Aplysia (Humeau et al., 2001) and in the secretion of neuropeptides in 345 

chromaffin cells (Zeniou-Meyer et al., 2007), its function in the regulation of SV recycling in 346 

mammalian synapses has not been investigated yet. Therefore, next we tested the involvement of 347 

PLD1 in SV recycling and its link to CtBP1-dependent SV retrieval. Acute application of VU 348 

0155069 (1µM for 5 min), a specific inhibitor of PLD1, led to a two-fold decrease in the rate of 349 

sypHy retrieval in control neurons, while it had no effect on the endocytosis rate in CtBP1KD 350 

neurons (Figure 6C,D). 351 

Considering the activity-induced recruitment of CtBP1 to nanodomains co-labeled with dynamin1 352 

and Syt1 and its dissociation from the endosome markers rab5 and rab7 we hypothesized that 353 
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CtBP1 localizes to the membrane proximal regions, where endocytosis of newly released SV 354 

proteins takes place. To address this by independent means we performed imaging with 355 

fluorescently labeled mCLING: a lipophilic reacidification-independent probe suitable for STED 356 

nanoscopy of endocytic organelles (Revelo et al., 2014). We loaded mCLING into the synapses 357 

of APV and CNQX silenced (for 10min) control and CtBP1KD944 neurons by stimulation with 200 358 

AP at 40 Hz and fixed them 30 seconds later. The mCLING labeling was notably reduced in the 359 

synapses in CtBP1KD944 neurons in comparison to the control (Figure 6E,F), but was again 360 

evident upon the expression of shRNA resistant EGFP-CtBP1 construct on CtBP1KD944 361 

background (Figure 6G). We next performed dual-color STED nanoscopy followed by co-362 

localization modelling to assess the co-distribution of mCLING and EGFP-CtBP1 (Figure 6G). 363 

This analysis revealed a significant negative correlation between the intensity of mCLING and the 364 

distance to individual EGFP-CtBP1 puncta, which supports a role of CtBP1 in SV endocytosis 365 

(Figure 6I).  366 

Phosphorylation of CtBP1 at serine 147 (S147), mediated by the kinase Pak1, was found to 367 

strongly increase the capacity of CtBP1 to stimulate membrane fission by increasing its ability to 368 

activate PLD1 (Haga et al., 2009; Liberali et al., 2008). To test the importance of this regulation at 369 

the presynapse we compared the mCLING labeling in neurons expressing the RNAi resistant 370 

EGFP-CtBP1 or EGFP-CtBP1S147A construct on CtBP1KD944 background. The mCLING 371 

labeling was reduced by 80% in cells expressing EGFP-CtBP1S147A as compared to cells 372 

expressing EGFP-CtBP1 (Figure 6G,H) indicating lower ability of this mutant to rescue stimulus-373 

induced membrane retrieval upon CtBP1KD. Moreover, the co-distribution between mCLING and 374 

S147A mutant was shifted towards higher distances compared to EGFP-CtBP1 (Figure 6J), which 375 

likely reflects impaired recruitment to the sites of endocytosis. Taken together these data indicate 376 

that the presence of CtBP1 at the endocytic sites and its phosphorylation at S147 are key factors 377 

determining the efficacy of SV retrieval.  378 

Phosphorylation of CtBP1 regulates its distribution between the CAZ and the presynaptic 379 

endocytic sites. 380 

Previous studies showed that the presynaptic scaffolding proteins Bsn and Pclo recruit CtBP1 to 381 

synapses via a direct interaction (Ivanova et al., 2015; tom Dieck et al., 2005). Despite the tight 382 

functional coupling between SV fusion and endocytosis, it is well established that the two 383 

processes take place at distinct membrane domains within the presynapse (Haucke et al., 2011; 384 

Maritzen and Haucke, 2018). Thus, the association of CtBP1 with Bsn and Pclo, which are 385 
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established components of the SV release sites, is seemingly in disagreement with the proposed 386 

function of CtBP1 in SV endocytosis. To address this apparent ambiguity, we performed the 387 

following series of experiments. First, we performed co-immunoprecipitation (CoIP) of Bsn with 388 

EGFP-CtBP1, overexpressed in primary cortical cultures in basal state or upon a treatment with 389 

the Pak1 inhibitor IPA3 for 1 h (Figure 7A). At basal state a considerable CoIP of CtBP1 with 390 

PLD1 but only a low binding to Bsn were detected. The IPA3 treatment visibly reduced the overall 391 

serine/threonine phosphorylation of CtBP1 (Figure 7C,D). Consistent with the requirement for 392 

Pak1-dependent phosphorylation of CtBP1 for its association with PLD1, IPA3 reduced the CoIP 393 

of PLD1 with CtBP1 to an undetectable minimum but increased the association of CtBP1 with Bsn 394 

(Figure 7A and B). This indicates that the phosphorylation of CtBP1 by Pak1 acts as a molecular 395 

switch which triggers its dissociation from Bsn and binding to PLD1. To further test this 396 

hypothesis, we compared the nanoscale co-localization of EGFP-CtBP1 or S147A mutant with 397 

endogenous Bsn at synapses of acutely silenced neurons before and upon stimulation with 200 398 

AP at 40 Hz. Consistent with our previously published observations, stimulation led to a tighter 399 

co-localization of EGFP-CtBP1 and Bsn (Figure 7E,F) (Ivanova et al., 2015). EGFP-CtBP1S147A 400 

showed a greater co-localization with Bsn than EGFP-CtBP1 in silenced cells and no effect on its 401 

co-distribution with Bsn was observed upon stimulation (Figure 7E,F). This supports our view that 402 

Pak1-mediated phosphorylation of S147 favors a redistribution of CtBP1 from Bsn towards PLD1, 403 

thus, promoting SV retrieval through activation of PLD1.  404 

Discussion:  405 

Nuclear CtBP1 restricts synaptogenesis, while synaptic CtBP1 promotes SV retrieval 406 

In this study we investigated the effect of CtBP1 depletion on synaptic function using knock down 407 

and knock out approaches. Neurons lacking CtBP1 had normal overall morphology but showed a 408 

significant shift in the distribution of SVs towards the AZ and an enlargement of the docked SVs 409 

at rest. Interestingly, a similar change in the distribution of SVs was also observed after treatment 410 

with BFA (Ramperez et al., 2017), which as shown here inhibits SV recycling via CtBP1, and 411 

upon depletion of Arf6, a component of the CtBP1-dependent fission machinery and an 412 

alternative activator of PLD1 (Haga et al., 2009; Tagliatti et al., 2016; Valente et al., 2012). Thus, 413 

it is tempting to speculate that insufficient PLD1 activity in the absence of CtBP1 might cause this 414 

phenotype. The efficiency of fission during vesicle budding crucially affects the size of the 415 

resulting vesicular structures. In line with that, enlarged SVs were observed in mutants of 416 

dynamin, AP180 and syndapin, which have been implicated in different steps of SV reformation, 417 
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like fission, recruitment of the clathrin-coat or induction/sensing of membrane curvature 418 

(Ferguson et al., 2007; Koch et al., 2011; Zhang et al., 1998). Thus, an involvement of CtBP1 in 419 

the fission of the SV membranes, might explain the changes in SV size observed in Ctbp1 KO 420 

synapses. 421 

Interference of CtBP1 expression in cultured neurons revealed its multifaceted role in the 422 

regulation of synaptogenesis and neurotransmission. A rescue strategy with CtBP1 fusion 423 

proteins selectively sorted to nucleus or synapses revealed distinct roles for CtBP1 in these 424 

spatially separated neuronal compartments. Nuclear CtBP1 restricted synaptogenesis and 425

presynaptic vesicular release probability possibly by repressing the expression of plasticity-426 

related genes, such as neurotrophins or neurotransmitter receptors (Ivanova et al., 2015). In line 427 

with that, the expression of the nuclear rescue construct YFP-CtBP2(NLS)-CtBP1 could 428 

normalize the higher number of morphologically identified excitatory synapses, the enlarged 429 

amplitudes of the evoked EPSC and the higher Pvr and PPR that were observed in CtBP1KD944 430 

neurons. Notably, the expression of the synaptic rescue (EGFP-CtBP1) on CtBP1KD944 431 

background tended to enhance the effect of CtBP1 depletion on synapse density and EPSC 432 

amplitude, suggesting a dominant-negative effect of this construct on the nuclear functions of 433 

CtBP1. One possible explanation of this effect is that the EGFP-CtBP1 binds to the nuclear 434 

CtBP1-interacting partners and promotes their cytoplasmic retention. However, expression of this 435 

construct on CtBP1KD944 background compensated the defects in SV retrieval and ameliorated 436 

the enhanced short-term depression of neurotransmission upon repetitive stimulations. This 437 

indicates a positive effect of synaptic CtBP1 on neurotransmission. Based on this, we can 438 

speculate that the recently reported activity-induced redistribution of CtBP1 from nucleus to 439 

presynapses exerts a dual-positive effect on neurotransmission (Ivanova et al., 2015). Thus, 440 

during bursts of intense neuronal activity the reduced nuclear abundance of CtBP1 will lead to a 441 

release of the transcriptional block of neuroplasticity-related genes, while the enhanced synaptic 442 

targeting will facilitate SV recycling.  443 

CtBP1 mediated membrane fission and PLD1 activation are required for SV retrieval 444 

Our data indicate that CtBP1-mediated membrane fission and activation of PLD1 has an 445 

important contribution to the effective SV retrieval at the presynapse. We provide multiple 446 

evidences supporting this view: 1) CtBP1D355A fission-deficient mutant failed to rescue SV 447 

448 

PLD1 failed to rescue endocytosis visualized with mCLING and 3) the pharmacological inhibition 449 
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of CtBP1-based fission complex using BFA or inhibition of PLD1 activity phenocopied the 450 

aberrant SV retrieval observed in CtBP1KD. Our data also indicate a role of PLD1 in SV recycling 451 

at hippocampal synapses. PLD1 was detected in synaptic plasma membranes isolated from rat 452 

synaptosomes and interference with PLD1 was shown to affect acetylcholine release from nerve 453 

ganglia in Aplysia (Humeau et al., 2001). However, PLD1 was mainly discussed in the context of 454 

exocytosis in neurons and chromaffin cells (Zeniou-Meyer et al., 2007). Our data indicate a role of 455 

PLD1 in SV retrieval in hippocampal synapses and reveal a requirement for CtBP1-mediated 456 

activation of PLD1 in this process. The activation of PLD1 depends on Pak1-mediated 457 

phosphorylation of CtBP1. It is unclear whether and how Pak1 activity is regulated at the 458 

presynapse but based on our findings we can speculate that the level of presynaptic Pak1 activity 459 

could regulate the SV retrieval and thereby modulate short-term plasticity of neurotransmission. 460 

Interestingly, the phosphorylation of S147 of CtBP1 by Pak1, which is necessary for PLD1 461 

activation, also induces dissociation of CtBP1 from Bsn, which anchors it to the active zones. This 462 

suggests that Pak1 activity might induce a rapid activation of PLD1 in the vicinity of presynaptic 463 

release sites and thereby link SV fusion and retrieval in time, space and extent. 464 

CtBP1-mediated lipid reorganization in SV retrieval  465 

CtBP1-based fission machinery was proposed to act in a dynamin-independent manner at the 466 

Golgi and plasma membrane in non-neuronal cells (Bonazzi et al., 2005; Haga et al., 2009; Yang 467 

et al., 2008). However, the fluid phase endocytosis switched from a CtBP1-dependent to a 468 

dynamin-dependent mechanism in fibroblasts in which CtBP1 was knocked out (Bonazzi et al., 469 

2005), suggesting a tight interaction between these pathways. Thus, it is possible that CtBP1- 470 

and dynamin-based fission machineries converge in their action at the presynapse, where 471 

particularly potent endocytosis is required for sustained SV replenishment. CtBP1 was suggested 472 

to mediate fission of target membranes by activation of lipid enzymes such as PLD1 and LPAAT, 473 

that generate curvature-inducing lipid modifications (Haga et al., 2009; Liberali et al., 2008; 474 

Pagliuso et al., 2016), and by their recruitment to the machinery, that initiates vesicular budding 475 

and tubulation (Valente et al., 2012). PLD1 and LPAAT catalyze production of the fusogenic PA, 476 

which, due to its conical shape, promotes negative membrane curvature necessary for vesicle 477 

fusion and fission (Kooijman et al., 2003). Besides its structural role, PA was also linked to the 478 

generation of PI(4,5)P2, the phospholipid involved in the recruitment of numerous proteins 479 

involved in endocytosis, including dynamin (Puchkov and Haucke, 2013). Specifically, PA 480 

activates PI kinases necessary for PI(4,5)P2 production (Jenkins et al., 1994; Moritz et al., 1992) 481 

mponent of the CtBP1-based fission complex in 482 
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non-neuronal cells (Valente et al., 2012). Thus, it is likely that CtBP1 promotes SV retrieval by 483 

recruitment and activation of multiple lipid-modifying enzymes, which drive the formation of a lipid 484 

environment permissive for compensatory endocytosis. The tight co-localization of CtBP1 and 485 

dynamin as well as the cooperative effect of the interference with their functions on SV recycling 486 

support this view. However, future studies will be needed to gain more insight into the 487 

mechanisms linking and regulating the different fission machineries involved in SV recycling. 488 

LEAD CONTACT AND MATERIALS AVAILABILITY 489 

Further information and requests for resources and reagents can be directed to and will be 490 
fulfilled by the Lead Contact, Anna Fejtova (Anna.Fejtova@uk-erlangen.de). 491 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 492 

Animals 493 

Cells and tissues used in this study were obtained from Wistar rats, Sprague-Dawley rats, 494 

C57BL/6N mice and Ctbp1tm1Sor (Ctbp1 KO) mouse strain (Hildebrand and Soriano, 2002) 495 

backcrossed to C57BL/6N. Animals of both sex were used. Animal handling was performed 496 

according to the regulations of the European Committees Council Directive 86/609/EEC, 497 

Landesverwaltungsamt Sachsen Anhalt, (AZ: T LIN-AF/2009), Berlin state government agency 498 

for Health and Social Services and the animal welfare committee of Charité Medical University 499 

Berlin, Germany (license no. T 0220/09).  500 

Lentiviral particle production 501 

Lentiviral particles were produced as described previously with slight modifications (Ivanova et al., 502 

2015). HEK293T cells (ATCC CRL-3216) were grown in media containing 10% fetal bovine 503 

serum (FBS) to 80% confluence and transfected using the calcium phosphate method (Fejtova et 504 

al., 2009) with three vectors: FUGW-based transfer, psPAX2 packaging, and p-CMV-VSV-G 505 

pseudotyping vectors (ratio 2:1:1). Cells were incubated for 8 h at 37°C in 5% CO2 atmosphere, 506 

before the FBS medium was replaced by Neurobasal (NB) medium, containing B27, antibiotics, 507 

and 0.8 mM glutamine. Virus-containing media was collected at day 3 and 4, passed through 0.45 508 

y neurons or stored at -80°C. 509 

Primary cultures and treatments 510 
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Primary dissociated hippocampal and cortical cultures from rat embryos and C57BL/6N and 511 

CtBP1 KO neonatal mice of were prepared as described in (Ivanova et al., 2015; Lazarevic et al., 512 

2011).  513 

Autaptic cultures from P0-P2 C57BL/6N mice were grown on coverslips with a dotted pattern of 514 

astrocytic microislands (Bekkers and Stevens, 1991). To grow neurons individually, 0.15% 515 

agarose solution was spread on 30 mm coverslips. Coating solution containing collagen and poly-516 

D-lysine in acetic acid was stamped onto the agarose, thus creating small islands of substrate 517 

w  Hippocampi were dissected out and digested with 25 U/ml of 518 

papain for 60 min at 37°C. After papain inactivation, hippocampi were mechanically dissociated in 519 

Neurobasal-A medium containing B-27, Glutamax and penicillin/streptomycin. To obtain a 520 

desirable distribution of neurons, astrocytes and neurons were plated onto the coverslips with a 521 

density of 50000 and 3000 cells/coverslip, respectively. To knock down CtBP1, neurons were 522 

infected 24 hours later with lentiviruses expressing scrambled, shRNA against CtBP1 or the 523 

rescue constructs EGFP-CtBP1 and YFP-CtBP2(NLS)-CtBP1. Experiments were performed on 524 

DIV14 (electrophysiological recordings) or DIV16-21 (fixed and live-cell imaging).  525 

Hippocampal neurons were co-transfected with syp mOrange2 and a plasmid expressing CtBP1 526 

scr, CtBP1KD944 or CtBP1KD944 along with shRNA-resistant EGFP-CtBP1, EGFP-527 

CtBP1D355A or YFP-CtBP2(NLS)-CtBP1 at DIV6 using Lipofectamine 2000 (Thermo Fisher 528 

Scientific) as recommended by the manufacturer. The neurons were used for live imaging 8 to 10 529 

days after the transfection.  530 

For the treatments, the following drugs were used: d ( ) 2 amino 5 phosphonopentanoic acid 531 

(APV, 50 cyano 7 nitroquinoxaline 2,3 dione disodium 532 

, brefeldin A (2.5 533 

-treated with these 534 

inhibitors for 5 minutes before imaging and the inhibitors were kept in the imaging buffer during 535 

as applied for 1h before the cells were collected 536 

or lysed for western blotting. The inhibitors of dynamin, Dynole 34-537 

for 1h during Syt1 Ab-CypHer uptake. The fixable endocytosis marker mCLING (ATTO647N-538 

labelled in Figure 6G and H and DY654-labelled in Figure 6E and F, 1:100, Synaptic Systems) 539 

540 

min before cells were stimulated with 200 AP at 40 Hz. To eliminate unspecific labeling neurons 541 

were washed three times with extracellular solution and fixed within 30 seconds after stimulation 542 

with a mixture of 4% paraformaldehyde (PFA) and 0.2% glutaraldehyde, as recommended by the 543 

manufacturer.  544 
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 545 

METHOD DETAILS 546 

 547 

Antibodies 548 

The following primary antibodies were used in this study: Mouse antibodies against: CtBP1 549 

(immunocytochemistry (ICC) 1:1,000, Western blotting (WB) 1:5,000, BD Biosciences, 612042), 550 

CtBP2 (WB 1:2000 BD Biosciences, 612044) synaptotagmin1 lumenal domain Oyster 550 or 551 

CypHer5E-labeled  (ICC 1:200, Synaptic Systems, 105311 and 105311CpH), rab5 (ICC 1:500, 552 

Synaptic Systems, cells stained with this antibody were fixed with ice-cold methanol for 10 min, 553 

followed by rehydration in PBS for 20 min, 108011), rab7 (ICC 1:1,000, Abcam, ab50533), 554 

phosphoserine/threonine (WB 1:1000, BD Biosciences, 612548), GluA Oyster 550-labeled (ICC 555 

1:200, Synaptic Systems, 182411 C3) -tubulin (WB 1:1000, Sigma Aldrich); Rabbit antibodies 556 

against: CtBP1 (ICC 1:1,000, WB 1:1,000, Synaptic Systems, 222002), GFP (ICC 1:1,000, WB 557 

1:5,000, Abcam, ab 6556), SV2B (ICC 1:200, Synaptic Systems, 119103), GAPDH (WB 1:3000, 558 

Abcam, ab37168), synaptotagmin1 lumenal domain Oyster 550-labeled (ICC 1:200, Synaptic 559 

Systems, 105103C3), synaptotagmin 1 lumenal domain (WB 1:1000, Synaptic Systems, 105102), 560 

dynamin1 (ICC 1:1000, Abcam, ab3456), rab22a (ICC 1:1000, Abcam, ab137093), 561 

Phospholipase D (WB 1:1000, Cell Signaling technologies, 3832S), , Homer1 (ICC 1:500, 562 

Synaptic Systems, 160003); Guinea pig antibodies against: synapsin 1, 2 (ICC 1:1,000, 563 

Synaptic Systems, 106004), synaptophysin 1 (ICC 1:1,000, Synaptic Systems, 101004), Piccolo 564 

(WB 1:2000, Dick et al, 2001). 565 

The following secondary cross-adsorbed antibodies were used in this study: Alexa 488  (ICC: 566 

1:1,000), Cy3 (ICC: 1:1,000), Cy5 (ICC: 1:2,000), Alexa 680- (WB 1:20,000) conjugated whole 567 

IgGs against mouse, rabbit and guinea pig were obtained from Invitrogen/Mol. Probes, IRDye  568 

800CW (WB 1:20,000) and Atto 647N (1:500, 610-156-121 and 611-156-122) from Rockland and 569 

Abberior STAR 580 (1:100, 2-0002-005-1 and 2-0012-005-8) from Abberior GmbH. 570 

DNA constructs  571 

EGFP-tagged CtBP1 was generated by cloning the sequence for CtBP1-S into pEGFPC vector. 572 

Subsequently, the DNA cassette containing EGFP-CtBP1 was shuttled into FUGW H1 lentiviral 573 

vector (Leal-Ortiz et al., 2008), replacing EGFP coding sequence. The shRNAs against CtBP1 574 

and YFP-CtBP2(NLS)-CtBP1 constructs were reported previously (Ivanova et al., 2015; Verger et 575 

al., 2006). All point mutations, including the silent point mutations for the rescue experiments, 576 
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were introduced by inverse PCR using primers containing the mutations and CtBP1-S coding 577 

sequence cloned in pBluescriptII SK-(AgilentTechnologies). The ratio:sypHy construct and syp 578 

mOrange2 used in this study were reported in (Lazarevic et al., 2017; Rose et al., 2013) and 579 

(Egashira et al., 2015), respectively. All constructs were verified by sequencing. 580 

Ultrastructural analysis 581 

Organotypic hippocampal slice cultures from Ctbp1 KO and WT littermates were prepared at 582 

postnatal day 0 and were cryo-fixed after 4-5 weeks in vitro under cryo-protectant conditions 583 

(20% bovine serum albumin in culture medium) using the High Pressure Freezing device 584 

HPM100 (Leica), and cryo-substituted in Freeze Substitution Processor EM AFS2 (Leica) 585 

according to previously published protocols (Imig and Cooper, 2017; Imig et al., 2014). For 2D 586 

analyses of synaptic morphology, electron micrographs were acquired from 60 nm-thick plastic 587 

sections with a transmission electron microscope (Zeiss LEO 912-Omega) operating at 80 kV. 588 

For 3D electron tomographic analysis of docked SV, 200 nm-thick plastic sections were imaged in 589 

a JEM-2100 transmission electron microscope (JEOL) operating at 200 kV. SerialEM 590 

(Mastronarde, 2005) was used to acquire single-axis tilt series (-60°/-55° to ±55°/±60°; 1° 591 

increments) at 25,000 fold magnification with an Orius SC1000 camera (Gatan, Inc.). Tomograms 592 

reconstructed from tilt series using the IMOD package (Kremer et al., 1996) had a voxel size of 593 

x,y,z = 1.82 nm. Tomogram acquisition and analyses were performed blindly. Quantifications 594 

were done manually using ImageJ (National Institutes of Health). The smallest SV distances from 595 

the outer leaflet of the SV membrane to the inner leaflet of the AZ plasma membrane were 596 

measured using the straight line tool of the ImageJ software. Only SVs observed to be in physical 597 

contact at their midline with the presynaptic membrane were considered docked (0-2 nm 598 

distance). The mean SV diameter was calculated from the area of the SV measured at its midline 599 

to the outer leaflet of the SV membrane using the elliptical selection tool of ImageJ. 600 

For illustrative purposes, images depicting tomographic sub-volumes represent an overlay of 601 

seven consecutive tomographic slices produced using the slicer tool of the 3dmod software of the 602 

IMOD software package to generate an approximately 13 nm thick sub-volume. 603 

Quantitative real-time PCR 604 

Quantitative real-time PCR was performed as described in (Ivanova et al., 2015). Total RNA was 605 

extracted from primary cortical cultures (DIV16) superinfected on the day of plating with lentiviral 606 

particles driving the expression of scrambled, shRNA944 and YFP-CtBP2(NLS)-CtBP1, using 607 

RNeasy Plus Mini Kit (Qiagen) and following the instructions of the manufacturer. The transcript 608 
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levels of BDNF and Arc were analyzed by a customized version of Rat Synaptic Plasticity RT2 609 

Profiler PCR Array (Qiagen). To calculate the expression of BDNF and Arc in relation to a 610 

611 

method, available in the software of Roche LightCycler480, to determine the crossing point (CP) 612 

of the PCR. The expression of lactate dehydrogenase A was used as a reference to calculate the 613 

relative mRNA levels of BDNF and Arc. 614 

Biochemical experimental work 615 

Cortical neurons with cell density 10 million per 75 cm2 flask were superinfected with lentiviral 616 

particles, driving the expression of EGFP-CtBP1. Cells (DIV16) were lysed in 10mM Tris HCl, 617 

150mM NaCl, 2% SDS, 1% deoxycholate and 1% Triton X-100 containing complete protease 618 

inhibitors (Roche), and PhosStop (Roche) and co-immunoprecipitations were performed using 619 

MicroMACS anti GFP MicroBeads and MicroColumns (Miltenyi Biotec) according to the 620 

instructions from the manufacturer.  621 

Crude synaptosomal fraction (P2) was prepared as follows: First, cell or mouse brain 622 

homogenates were prepared in HEPES-buffered sucrose (4 mM HEPES pH 7.4, 0.32 M sucrose) 623 

and centrifuged at 1000 x g for 10 min to pellet the nuclear fraction (P1). The supernatant was 624 

then centrifuged at 12000 g for 20 min to give the crude synaptosomal pellet (P2). The crude 625 

synaptosomal fraction (P2) was lysed in 10 mM Tris HCl, 150mM NaCl, 2% SDS, 1% 626 

deoxycholate and 1% Triton X-100 containing complete protease inhibitors (Roche), and 627 

PhosStop (Roche) and further subjected to IP or western blotting. 628 

Protein samples were separated on 5 20% Tris-glycine gels, or 3.5 8% Tris-acetate gels as 629 

described previously (Ivanova et al., 2015) or on 10% (Bio-Rad TGX-Stain free gels) and blotted 630 

onto Millipore Immobilon FL PVDF membranes by tank or semidry blotting. Immunodetection was 631 

performed on Odyssey Infrared Scanner (LI-COR). For the quantification of the immunoblots the 632 

integrated density (ID) of signals was measured using ImageJ by setting rectangular ROIs with 633 

identical size around or using Image Studio Software (LI-COR).  Samples of each experimental 634 

group were always loaded and quantified on the same membrane. TCE total protein stain used 635 

for normalization in Figure 1B. In Figure S2 -tubulin were used for normalization in 636 

homogenates and P2 fraction, respectively. The values for ID of CtBP1 or Pak1 (Figure 7A-D) 637 

were normalized to the corresponding expression levels of the two proteins in each experimental 638 

group. The antibodies used for immunodetection and the molecular weight of the markers are 639 

indicated in the figures. 640 
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Microscopy and image analysis 641 

Immunostaining of neurons was performed as described in (Lazarevic et al., 2011). For 642 

quantifications, identical antibodies solutions were used for all coverslips from the same 643 

experiment. For the co-localization analysis, neurons were silenced with APV and CNQX for 10 644 

minutes, in order to minimize the effect of the ongoing activity on the variance between synapses 645 

and then stimulated with 200 AP at 40 Hz. Cells were fixed within 30 seconds after the end of 646 

stimulation. 647 

Staining with synaptotagmin 1 antibody (Syt1 Ab uptake) was performed by incubating the cells 648 

with fluorescently-labelled primary antibody dissolved in extracellular solution, containing 119 mM 649 

NaCl, 2.5 mM KCl, 2 mM CaCl2, 2 mM MgCl2, 30 mM glucose, and 25 mM HEPES, pH 7.4 for 30 650 

min at 37°C (Lazarevic et al., 2011) before fixation. For the imaging with CypHer5E-labeled anti-651 

synaptotagmin1 antibody, cells were incubated with the antibody diluted in a buffer containing 120 652 

mM NaCl, 5 mM KCl, 2 mM MgCl2, 2 mM CaCl2, 10 mM glucose, and 18 mM NaHCO3, pH 7.4 653 

for 2-3 hours at 37°C prior imaging. 654 

Epifluorescence images were acquired on a Zeiss Axio Imager A2 microscope with Cool Snap EZ 655 

camera (Visitron Systems) controlled by VisiView (Visitron Systems GmbH) software.  656 

Confocal images in Figure S2A were acquired on a Leica SP5 confocal microscope. The format 657 

of the images was 2048x2048 pixels display resolution, 8 bit dynamic range, for acquisition 63x 658 

objective, NA 1.40 and 2x optical zoom were used, which results in a voxel size of approximately 659 

50 nm. 660 

Dual-color STED images (1024x1024 pixels display resolution, 8 bit dynamic range) were 661 

acquired on a Leica TCS SP8-3X gated STED microscope using a HC APO CS2 100x objective, 662 

NA 1.40, and 5x optical zoom, corresponding to a voxel size of approximately 23 nm. 16 times 663 

line averaging was applied on frames acquired at a scan speed 600 Hz. The built-in pulsed white 664 

light laser of the setup was used to excite Abberior STAR 580 and Atto 647N at 561 nm and 650 665 

nm, respectively. The detection was done at 580-620 nm for Abberior STAR 580 and 660-730 nm 666 

for Atto647N. Both dyes were depleted using a pulsed 775 nm depletion laser. Time-gated 667 

detection of 0.5-1 ns to 6 ns was set for both STED channels. All raw data were subsequently 668 

deconvolved using the calculated point spread function (PSF) of the system and the Classic 669 

Maximum Likelihood Estimation (CMLE) algorithm with Huygens Professional (SVI,15.10.1). In 670 

brief, after an automatic background correction, the signal to noise ratio was set to 15 and the 671 

optimized iteration mode of the CMLE was run until a quality threshold of 0.05 was reached. The 672 

deconvolved datasets were corrected for a chromatic aberration in z, using the Chromatic 673 

Aberration Corrector (CAC) in Huygens. 674 
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The co-localization analysis was performed on the deconvolved STED stacks using Imaris 8.3 675 

(Bitplane, Oxford Instruments). To detect punctate staining as spots Imaris spot detection 676 

algorithm was applied as follows: the sensitivity for the detection of the spots in each channel was 677 

determined by an automatically generated threshold and the spots diameter was set to 0.06 µm. 678 

The distances between the spots in the two channels were measured using a customized version 679 

of the Imaris XTension Spots Colocalize, which determines the co-localization between the spots 680 

within a user-defined distance (1 µm) and bins the data into several bins with equal width (100 681 

nm).  682 

For quantifications, the same detector settings were used for all coverslips quantified in one 683 

experiment. From each culture, images from at least two different coverslips were acquired and 684 

quantified to minimize experimental variability. The nuclear fluorescence was assessed as 685 

established before (Ivanova et al., 2015). ImageJ (NIH) and OpenView software (Tsuriel et al., 686 

2006) were used for quantitative immunofluorescence analysis. After removing the background by 687 

threshold subtraction in ImageJ, synaptic puncta were defined with OpenView software by setting 688 

rectangular regions of interest (ROI) with identical dimensions around local intensity maxima in 689 

the channel with staining for synapsin or any of the other synaptic markers that were used (GluA, 690 

homer1, synaptophysin, SV2B). Mean immunofluorescence (IF) intensities were measured in the 691 

synaptic ROIs in all corresponding channels using the same software and normalized to the mean 692 

IF intensities of the control group for each of the experiments. The number of synapses per unit of 693 

dendrite length was determined as follows: First synapsin puncta along 30 µm of proximal 694 

dendrite, was detected using Find Maxima function in ImageJ, by setting the same noise 695 

tolerance to all images quantified in one experiment; Mean IF intensities of GluA were measured 696 

in circular ROIs set around the local intensity maxima in the image with synapsin staining; The 697 

number of GluA puncta co-localizing with synapsin was calculated by applying an identical 698 

intensity threshold for GluA detection between the different conditions within an experiment. 699 

pHluorin imaging and analysis 700 

The pHluorin imaging was performed with hippocampal cultures DIV16 to 20, transduced with 701 

lentiviral particles on the day of plating.  702 

The coverslips were removed from the cell culture plates and mounted in an imaging chamber 703 

(Warner instruments), supplied with a pair of platinum wire electrodes, 1 cm apart, for electrical 704 

stimulation. The imaging was performed at 26°C in extracellular solution, containing 119 mM 705 

706 

6 cyano 7 nitroquinoxaline 2,3 d ( ) 2 amino 5707 
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phosphonopentanoic acid (APV, Tocris), on inverted microscope (Observer. D1; Zeiss-as 708 

described above) equipped with an EMCCD camera (Evolve 512; Photometrics) controlled by 709 

MetaMorph Imaging (MDS Analytical Technologies) and VisiView (Visitron Systems GmbH) 710 

software, using 63x objective. EGFP ET filter set (exciter 470/40, emitter 525/50, dichroic 495 LP, 711 

Chroma Technology Corp.) and Cy5 ET filter set (exciter 620/60, emitter 700/75, dichroic 660 LP, 712 

Chroma Technology Corp.) were used for imaging of the pHluorin and CypHer5E, respectively. 713 

Cultures were stimulated with a train of 40 or 200 action potentials (1 ms, constant voltage 714 

pulses) at 5, 20 or 40 Hz using S48 stimulator (GRASS Technologies). The alkaline trapping 715 

method was used for quantification of the recycling vesicle pools. In brief, the stimulation of sypHy 716 

717 

inhibitor of the vesicular V-type ATPase. Exocytosis of RRP was triggered by delivering of 40 AP 718 

at 20 Hz. Following a 2 min break after the end of the first train of stimuli TRP was released by 719 

stimulation with 200 AP at 20 Hz. The relative sizes of RRP and TRP were determined as 720 

fractions of the total sypHy-expressing pool measured after addition of alkaline imaging buffer (60 721 

mM NaCl in the extracellular solution was replaced with 60 mM NH4Cl). Fluorescent images were 722 

acquired at 1 Hz (Figure 1I) and 10 Hz (Figures 1F,J,K, 4E, 6A-D, S2C,G, and S4). Imaging of 723 

hippocampal neurons transfected with syp mOrange2 (Figure 4C) was performed in a modified 724 

extracellular solution (136-mM NaCl, 2.5 mM KCl, 2 mM CaCl2, 1.3 mM MgCl2, 10 mM glucose, 725 

 pH 7.4) on inverted Zeiss Axio Observer.Z1 726 

epifluorescence microscope, equipped with Zeiss AxioCam 506 camera controlled by ZEISS ZEN 727 

2 software, using EC Plan-Neofluar 40x oil immersion objective (NA 1.3) and a DsRED filter set 728 

(exciter 538-562, beam splitter 570, emitter 570-640). Cultures were stimulated with a train of 200 729 

AP delivered at 20 Hz (100 mA, 1 ms pulse width) and fluorescent images were acquired at 0.5 730 

Hz. Synaptic puncta responding to stimulation were identified by subtracting an average of the 731 

first several frames of the baseline from an average of several frames at the end of stimulation. 732 

The mean IF intensities were measured in ROIs with an identical size, placed automatically over 733 

each responding synapse using a self-written macro in ImageJ. The data traces were determined 734 

after removing the background by threshold subtraction and correction for bleaching, calculated 735 

from the bleaching of unresponsive boutons from the same coverslip. The half times for 736 

endocytosis (t1/2) were determined by applying a single exponential fit to the decay phases of the 737 

data traces using GraphPad Prism5 and the following equation: Ft=Fstim*exp(-t/tau), 738 

t1/2=ln(2)*tau, where Fstim is the fluorescence intensity at the end of stimulation and tau is the 739 

time constant for endocytosis. 740 

  741 
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Electrophysiology 742 

Whole-cell voltage clamp recordings were performed between 14 and 18 days in vitro (DIV) in 743 

autaptic neurons at room temperature. Ionic currents were acquired using a Digidata 1440A 744 

digitizer and a Multiclamp 700B amplifier under the control of Clampex X software (Axon 745 

instrument). Series resistance was set at 70% and only neurons with series resistances below 10 746 

 kHz and low-pass filtered at 3 kHz. Borosilicate 747 

 and filled with an intracellular solution 748 

containing (in mM): 136 KCl, 17.8 HEPES, 1 EGTA, 4.6 MgCl2, 4 Na2ATP, 0.3 Na2GTP, 12 749 

phosphocreatine, and 50 U/ml phosphocreatine kinase; 300 mOsm; pH 7.4. Autaptic neurons 750 

were continuously perfused with standard extracellular solution composed of (in mM): 140 NaCl, 751 

2.4 KCl, 10 HEPES, 10 glucose, 2 CaCl2, 4 MgCl2; 300 mOsm; pH 7.4. Spontaneous release was 752 

measured by recording mEPSC for 30 s at a holding potential of -70 mV in the presence of 3 mM 753 

kynurenic acid to detect false positive events and for the equal amount of time in extracellular 754 

solution. Data were filtered at 1 kHz and analyzed using template-based miniature event 755 

detection algorithms implemented in the AxoGraph X software. Action potential-evoked release 756 

-757 

releasable pool (RRP) size, 500 mM hypertonic sucrose added to standard extracellular solution, 758 

was applied for 5 s using a fast-flow system (Pyott and Rosenmund, 2002). For vesicular release 759 

probability (Pvr) calculations, the ratio of EPSC charge to RRP charge was determined. Short-760 

term plasticity was examined either by evoking 2 unclamped AP with 25 ms interval (40 Hz) or a 761 

train of 50 AP at an interval of 100 ms (10 Hz). All electrophysiological data were analyzed offline 762 

using Axograph X (Axograph Scientific). 763 

QUANTIFICATION AND STATISTICAL ANALYSIS 764 

All quantitative results are given as means ± standard errors of the mean (SEM) and normalised 765 

to the values of control. Statistical analyses were performed with Prism 7 and 8 (GraphPad 766 

Software, Inc.). The sample sizes (n numbers) were adjusted based on published studies using 767 

similar methodology. In the plots the interquartile range and median are depicted as boxes, 768 

minimal and maximal values as whiskers and + indicates mean. In Figure 2 F and G scatter dot 769 

plots show mean and 95% CI, and in 2 L and N bars indicate mean and SEM. Data points in 770 

curves in Figure 3L, 4C and E, 6A-D, are depicted as means and SEM. n numbers correspond to 771 

the number of cells (fixed cell imaging and electrophysiology experiments), individual coverslips 772 

(live cell imaging experiments), synaptic profiles (EM data), number of independent 773 
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immunoprecipitations (IP) or samples from independent animals (WB) and are indicated for each 774 

group in graphs. In graphs comparisons with the control are indicated above each box and, 775 

comparisons between the conditions are given as horizontal bars. The statistical tests were 776 

chosen after the distribution of the data sets was explored. The scoring and the statistical tests 777 

used to compute the P values are specified in the datatable. Significance is indicated using 778 

asterisks: nsP>0.05, *P<0.05, **P<0.01, ***P<0.001, **** P<0.0001. 779 

DATA AND CODE AVAILABILITY 780 

Requests for data and the scripts used for the main steps of the analysis of the pHluorin and 781 

STED data should be directed to the Lead Contact Anna Fejtova and will be made available upon 782 

reasonable request.  783 
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Figure legends 802 

Figure 1 803 

Knock down of CtBP1 reduces SV recycling. 804 

A) Representative images showing that the general neuronal morphology and the localization 805 
of synaptic markers are not changed in CtBP1KD neurons. 806 

B) Representative Western blots of samples from rat neurons transduced with viruses 807 
expressing shRNAs: scr, CtBP1KD944 and KD467 together with sypHy. The 808 
immunoreactivity for CtBP1 and CtBP2 and TCE total protein stain used as a loading 809 
control are shown. While notable downregulation of CtBP1 is evident in KD samples 810 
compared to scr, no changes were detected for CtBP2.  811 

C) Quantification of the Syt1 Ab uptake driven by basal network activity, depolarization with 812 
50 mM KCl or in the presence of 1 µM TTX in scr, and knockdown cultures.  813 

D) Representative images of Syt1 Ab uptake driven by basal neuronal network activity in 814 
control (scr), CtBP1KD944 and CtBP1KD467 cultures. 815 

E) Representative images of neurons expressing sypHy used to determine SV pool sizes. 816 
Cells were imaged in the presence of bafilomycin A1 during stimulation with 40 AP at 20 817 
Hz to release RRP. After a rest for 2 min a train of 200 AP at 20 Hz triggered the 818 
exocytosis of all release-competent vesicles (TRP). A final NH4Cl-pulse that visualized all 819 
released and non-released sypHy-positive vesicles (total pool: TP) was used for 820 
normalization. 821 

F) Average sypHy-fluorescence (FsypHy) traces reporting SV pool sizes from control and 822 
CtBP1KD neurons. RRP and TRP are given as fractions of TP.  823 

G) The mean values of RRP in scr, CtBP1KD944 and CtBP1KD467 did not differ significantly, 824 
but KD of CtBP1 leads to a significant reduction of TRP size. 825 

H) Images of sypHy showing SV exo-endocytosis at synapses in response to 200 AP at 5 Hz. 826 
The upper image shows the reference F of tdimer 2 before stimulation and the lower three 827 
the green F of sypHy before, during and after the stimulation.  828 

I-K) CtBP1 deletion results in slower retrieval of exocytosed SV. Peak-normalized sypHy 829 
responses to 200 AP at 5 Hz (I), 200 AP at 20 Hz (J) and 200 AP at 40 Hz (K) and respective 830 
single exponential fits of fluorescence decay are shown for each group. The estimated half 831 
times of endocytosis (t1/2) are plotted. 832 

Overlays are shown in the indicated colors. Scale bar is 10 µm in A and 5 µm in D, E and H.  833 

 834 

Figure 2  835 

Ultrastructural analysis of synaptic morphology and SV distribution in Ctbp1 KO and wild-836 
type (WT) neurons 837 

Synaptic profiles of glutamatergic spine synapses in high-pressure frozen and freeze substituted 838 
hippocampal organotypic slice cultures of Ctbp1 knock out (KO) and wild-type (WT) animals were 839 
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analysed in electron micrographs of 60 nm-thick ultrathin sections (A-G) and by 3D electron 840 
tomography (H-P). 841 

A and B) Electron micrographs of WT and respective Ctbp1 KO synaptic profiles. 842 
C to G) Mean values for number of SVs per synaptic profile(C), SV density(D), postsynaptic 843 

density (PSD) length (E), number of endosomes per synaptic profile(F,) and number of 844 
large dense-core vesicles (LDCVs) per synaptic profile(G).  845 

H and I) Electron tomography sub-volumes of wild-type (H) and Ctbp1 KO (I) synapses.  846 
J and K) 3D models of synaptic profiles including orthogonal views of the active zone (AZ, 847 

white; docked SVs, red; nonattached SVs, gray). 848 
L to P) Graphs show spatial distribution of SVs within 100 nm of the AZ (L), mean number of 849 

docked SVs (within 0 2 nm of the AZ) per AZ area (M), frequency distribution of SV 850 
diameters within 200 nm of the AZ (N), mean diameter of docked SVs (O) and mean 851 
number SV within 0 40 nm of the AZ per AZ area. 852 

Scale bars: 200 nm in B) and 100 nm in I)  853 

Figure 3  854 

Synaptic and nuclear CtBP1 have distinct effects on neurotransmission and their deletion 855 
leads to pronounced short-term depression   856 

A) Averaged normalized evoked EPSC amplitudes from control, CtBP1KD944, EGFP-CtBP1 857 
and YFP-CtBP2(NLS)-CtBP1 expressed in CtBP1KD944 neurons. 858 

B) Example traces showing spontaneous EPSCs from control, CtBP1KD944 neurons, or 859 
neurons expressing EGFP-CtBP1 and YFP-CtBP2(NLS)-CtBP1 on CtBP1KD background.  860 

C) Respective quantifications of average mEPSC amplitudes from the groups shown in (B).  861 
D) Respective quantifications of mEPSC frequency from the groups shown in (B).  862 
E) Autaptic neurons expressing the scrambled and CtBP1KD944 shRNA or the rescue 863 

variants: EGFP-CtBP1 or YFP-CtBP2(NLS)-CtBP1 on CtBP1KD944 background, were live 864 
stained for surface AMPA receptors and post fixation for synapsin to label presynapses. 865 
The overlays are shown in the indicated colors. Scale bar: 5µm 866 

F and G) Quantification of the experiment in E. IF intensity of surface expressed GluA at 867 
synapses does not differ between conditions, but CtBP1KD944 and expression of EGFP-868 
CtBP1 in CtBP1KD944 neurons increase the number of synapses. 869 

H and I) Typical responses to application of 500mOsmM sucrose for 10sec (H) and average 870 
normalized sizes of RRP (I).  871 
J) and K) Averaged normalized vesicular release probability (J) and PPR (K) in control, 872 
CtBP1KD944, and EGFP-CtBP1 and YFP-CtBP2(NLS)-CtBP1 expressed in CtBP1KD944 873 
neurons. 874 

L) Averaged normalized amplitudes of EPSC evoked by a train of stimuli at 10Hz. 875 
 876 
Figure 4  877 

Synaptic CtBP1 regulates SV recycling and short-term plasticity 878 

A) Syt1 Ab uptake was used to evaluate the efficacy of SV recycling in control, CtBP1KD944 879 
and CtBP1KD944 neurons expressing the rescue constructs: EGFP-CtBP1 and YFP-880 
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CtBP2(NLS)-CtBP1. Neurons were stained for synapsin to label synapses. Colored 881 
images represent overlays. Scale bar: 5µm. 882 

B) Expression of EGFP-CtBP1 rescues the Syt1 Ab uptake in CtBP1KD944 neurons up to 883 
80% of the control levels. The fission deficient mutant EGFP-CtBP1D355A has a reduced 884 
rescue capacity compared to EGFP-CtBP1. Expression of the nuclear rescue: YFP-885 
CtBP2(NLS)-CtBP1, does not compensate for the decreased Syt1 Ab uptake in 886 
CtBP1KD944. 887 

C) Average sypmOrange2 responses to 200 AP at 20 Hz from control, CtBP1KD944 or 888 
CtBP1KD944 neurons expressing EGFP-CtBP1, EGFP-CtBP1D355A or YFP-889 
CtBP2(NLS)-CtBP1.  890 

D) The endocytic half times, t1/2 from the experiment in (C) indicated that the rate of 891 
endocytosis was significantly lower in CtBP1KD944 compared to control. While expression 892 
of EGFP-CtBP1 in CtBP1KD944 cells rescued the endocytosis rate, expression of EGFP-893 
CtBP1D355A or YFP-CtBP2(NLS)-CtBP1 did not. 894 

E) Visualization of short-term depression of exocytosis in CtBP1KD944 and upon expression 895 
of rescue constructs. Plotted are average Syt1 Ab-CypHer responses to 40AP at 20Hz (a 896 
reference response), followed by a 60s rest period and 200 AP at 10 Hz in the presence of 897 
bafilomycin A1. The traces were normalized to the amplitudes of the reference responses 898 
in each condition.  899 

F) The absence of synaptic CtBP1 led to a reduction of the plateau fluorescence responses 900 
in experiment E.  901 

Figure 5  902 

CtBP1 and dynamin act at the same membrane domain in an independent but likely 903 
cooperative manner  904 

A) Orthographic views of the distribution of synaptic CtBP1 and the endocytic markers 905 
dynamin1, rab5, rab7, rab22 in neurons stimulated with 200 AP at 40 Hz. Punctate 906 

-localization was assessed as a distance 907 
from the CtBP1-labeled spots (synaptic distance) < 1 µm. 908 

B) The histogram shows the distribution of synaptic puncta co-localizing with CtBP1, binned 909 
according to the distance to CtBP1. A significantly smaller distance to CtBP1 is evident 910 
for dynamin1 (0-100 and 100-200 nm distance to CtBP1) compared to the other 911 
endosome markers. 912 

C)  Images of Syt1 Ab-CypHer uptake in control and CtBP1KD944 neurons untreated or 913 
treated with dynole 34-2 (C, 30 µM) for 1h. Live staining for surface GluA receptors was 914 
used to mark synapses. Overlays are shown as colored images.  915 

D)  Dynole 34-2 inhibits endocytosis in control and in CtBP1KD944 neurons. The residual 916 
endocytosis is significantly lower upon Dynole 34-2 application in CtBP1944KD 917 
suggesting an interaction of treatments.  918 

Scale bar is 0.1 µm in (A) and 5µm in (C).  919 

Figure 6  920 

CtBP1 promotes SV retrieval by activation of PLD1  921 
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A to D) Average sypHy responses to 200 AP at 20 Hz were recorded and quantification of 922 
t1/2 of recovery was performed upon treatment with BFA (A,B)  or PLD1 inhibitor (C,D) 923 
in control (A,C) or CtBP1KD944 neurons (B,D). SV retrieval was significantly delayed in 924 
BFA-treated neurons (A) but not further affected in BFA treated CtBP1KD944 neurons 925 
(B). Treatment with a PLD1 inhibitor affected SV retrieval in control neurons (C) but not 926 
in CtBP1KD944 neurons (D). The same controls were plotted in (A) and (C) as well as 927 
in (B) and (D), respectively.  928 

E) The endocytic probe mCLING-DY654 was loaded by stimulation of control and 929 
CtBP1KD944 neurons with 200AP at 40Hz. Synapses were stained with synapsin Ab. 930 
Synapses in CtBP1KD944 neurons show a reduction in the mCLING labeling.  931 

F) Quantification of synaptic mCLING IF in (E). 932 
G) Orthographic views of synaptic EGFP-CtBP1 or EGFP-CtBP1S147A (S147A) expressed 933 

in CtBP1KD944 neurons and the endocytic probe mCLING-ATTO647N, loaded by 934 
stimulation with 200 AP at 40 Hz.  935 

H) Quantification of the mCLING intensities from EGFP-CtBP1- and S147A-labeled 936 
synapses in G. 937 

I) Correlation of mCLING intensities and the distances to EGFP-CtBP1. The intensity of 938 
the endocytic probe was inversely correlated with the distance to EGFP-CtBP1. 939 

J) The histogram shows the distribution of mCLING puncta co-localizing with EGFP-CtBP1 940 
or S147A, binned according to the distance mCLING-CtBP1. Note the shift in the 941 
histogram of EGFP-CtBP1 towards closer distances. 942 

Scale bar is 2 µm in E and 0.1 µm in G.  943 

Figure 7  944 

PAK1 phosphorylation mediates a switch in the association of CtBP1 with Bsn and PLD1  945 

A and B) Inhibition of Pak1 increases the binding of EGFP-CtBP1 to Bsn and reduces its 946 
binding to PLD1. (A) Co-IP with EGFP antibodies was performed from neuronal 947 
cultures expressing EGFP-CtBP1 and treated or not with the Pak1 inhibitor IPA3 948 
(50µM, 1h). (B) Quantification of the binding of Bsn to CtBP1.  949 

C and D) IP with EGFP antibodies was performed from whole cell lysates or P2 fractions of 950 
neuronal cultures expressing EGFP-CtBP1 and treated or not with the Pak1 inhibitor 951 
IPA3 (50µM for 1h). The Western blots were probed with a pan anti Ser/Thr Ab to 952 
visualize the phospho-Ser/Thr levels of CtBP1. Quantification of the Ser/Thr 953 
phosphorylation of CtBP1.  954 

E) The 2 color-STED images show a tighter co-localization of EGFP-CtBP1 with Bsn after 955 
stimulation with 200 AP at 40 Hz compared to cells at rest. EGFP-CtBP1S147A 956 
displays a tight co-localization with Bsn independently of neuronal activity.  957 

F) The histogram shows the relative distribution of Bsn puncta co-localizing with EGFP-958 
CtBP1 or S147A at rest and upon stimulation.  959 

Scale bar is 40 nm.  960 

Figure S1  961 
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Knock down of CtBP1 does not affect the overall expression of synaptic proteins and 962 
CtBP2 963 

A) Synaptic abundance of pre- (SV2B, synapsin, synaptophysin) and post-synaptic markers 964 
(homer1, GluA) does not change in CtBP1KD neurons.  965 

B) Quantification of the effects shown in A) 966 
C) Nuclear CtBP2 does not change in CtBP1KD neurons. 967 
D) Quantification of the effects shown in C) 968 

Scale bar is 5 µm in A, and 10 µm in C. 969 

Figure S2  970 

Ctbp1 KO synapses have a reduced rate of SV endocytosis and a lower number of release-971 
competent vesicles. 972 

A) Immunoblot detection of synaptic proteins in brain homogenates (H) and crude 973 
synaptosomes (P2) from WT and CtBP1 -tubulin are loading 974 
controls.  975 

B) Quantification of the effects shown in A) 976 
C) Average sypHy-fluorescence traces reporting SV pool sizes from neurons derived from 977 

WT and Ctbp1-/- mice.  978 
D) The mean values of RRP in WT and Ctbp1-/- did not differ significantly. 979 
E) Quantification of TRP size in WT and Ctbp1-/- . 980 
F) Neurons prepared from Ctbp1-/- animals and their WT siblings stained with an anti 981 

synapsin Ab, to label presynaptic terminals and pan anti GluA Ab to label 982 
postsynapses.  Number of co-localizing synapsin and GluA puncta was slightly but not 983 
significantly increased in KO compared to control. The overlays are shown in the 984 
indicated colors. Scale bar: 5µm. 985 

G) Peak-normalized sypHy responses to 200 AP at 20Hz. The half times: t1/2 of 986 
endocytosis (bar graph) were smaller in WT neurons compared to Ctbp1-/- . 987 

 988 

Figure S3  989 

Expression of YFP-CtBP2(NLS)-CtBP1 reverts the effect of CtBP1KD944 on gene 990 
expression. 991 

A) Perspective views of 3D reconstructions of hippocampal neurons showing the synapto-992 
nuclear distribution of the endogenous CtBP1 and the expressed rescue variants. 993 
Synapsin staining labels presynaptic terminals; DAPI labels nuclei. Note that EGFP-CtBP1 994 
shows a decreased nuclear and an increased synaptic localization, whereas YFP-995 
CtBP2(NLS)-CtBP1 is expressed only in the nucleus. For better visualization several 996 
EGFP-CtBP1-positive spots were removed from the planes above the nucleus. Overlays 997 
are shown in the indicated colors. Scale bar: 7µm. 998 
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B and C) YFP-CtBP2(NLS)-CtBP1 counteracts the increased expression of BDNF and Arc in 999 
CtBP1KD944 neuronal cultures.  1000 

Figure S4 1001 

Frequency-dependent short-term synaptic depression at CtBP1-deficient synapses  1002 

A) and B) Average Syt1 Ab-CypHer responses to 50 AP at 20 Hz (a reference response), 1003 
followed by a 60s rest period and 200 AP at 5 Hz (A) or 40 Hz (B) in the presence of 80 1004 
nM folimycin. The traces were normalized to the amplitudes of the reference response. KD 1005 
of CtBP1 reduces the fluorescence responses to 200 AP at 5 Hz and even more 1006 
pronouncedly at 40 Hz.  1007 

 1008 

Figure S5 1009 

Effect of synaptic stimulation on the co-localization of CtBP1 with the endocytic markers 1010 
dynamin1, rab5, rab7, rab22 and the SV protein Syt1. 1011 

A - E) Cumulative plots showing the % of dynamin1, rab5, rab7, rab22 and Syt1 puncta co-1012 
localizing with CtBP1 in control (treated with 50µM APV and 10µM CNQX for 10 min) and 1013 
stimulated (200AP at 40Hz) neurons, binned according to the distance to the CtBP1 1014 
labeled spots.  1015 

 1016 

Table 1: Ultrastructural analysis of synaptic morphology 1017 

2D EM Analysis of Synaptic Morphology 1018 

 WT (N=3, n=159) KO (N=4, n=146)  
# of SVs per profile 80.72 ± 3.244 89.21 ± 3.721 P = 0.098 
terminal area ( x 0.01 µm2) 40.38 ± 1.182 41.19 ± 1.303 P = 0.845 
# SVs / 0.01 µm2 terminal area 1.993 ± 0.054 2.159 ± 0.064 P = 0.065 
PSD length (nm) 373.7 ± 9.261 379.4 ± 9.421 P = 0.627 
# of endosomes / terminal 0.843 ± 0.077 0.726 ± 0.082 P = 0.140 
# of LDCVs / terminal 0.151 ± 0.034 0.24 ± 0.043 P = 0.083 
N, number of animals; n, number of synaptic profiles; SV, synaptic vesicle; PSD, postsynaptic 1019 
density; LDCV, large dense-core vesicle. (red P-values = Mann-Whitney test, black P-values = 1020 
unpaired t-test) 1021 

3D Electron Tomographic Analysis of Synaptic Vesicle Pools 1022 

 WT (N=3, n=26) KO (N=4, n=25)  
# SVs within 0-2 nm of AZ 0.605 ± 0.092 0.876 ± 0.117 P = 0.075 
# SVs within 0-5 nm of AZ 0.797 ± 0.109 1.213 ± 0.142 *P = 0.043 
# SVs within 0-40 nm of AZ 1.821 ± 0.12 2.496 ± 0.168 **P = 0.002 
# SVs within 0-100 nm of AZ 5.876 ± 0.267 7.307 ± 0.382 **P = 0.003 
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# SVs within 0-200 nm of AZ 14.65 ± 0.817 15.31 ± 0.811 P = 0.572 
# SVs within 5-10 nm of AZ 0.214 ± 0.041 0.292 ± 0.07 P = 0.621 
# SVs within 10-20 nm of AZ 0.264 ± 0.058 0.162 ± 0.037 P = 0.354 
# SVs within 20-30 nm of AZ 0.213 ± 0.051 0.363 ± 0.069 P = 0.072 
# SVs within 30-40 nm of AZ 0.345 ± 0.052 0.465 ± 0.07 P = 0.170 
# SVs within 40-50 nm of AZ 0.531 ± 0.053 0.596 ± 0.081 P = 0.503 
# SVs within 50-100 nm of AZ 3.54 ± 0.196 4.215 ± 0.245 *P = 0.036 
# SVs within 100-150 nm of 
AZ 

4.408 ± 0.331 4.175 ± 0.251 P = 0.579 

# SVs within 150-200 nm of 
AZ 

4.34 ± 0.328 3.827 ± 0.291 P = 0.249 

AZ area (nm2) 40.900 ± 1.775 44.240 ± 2.276 P = 0.569 
SV diameter  
(SVs within 0-200 nm of AZ) 

44.95 ± 0.347 45.77 ± 0.38 P = 0.114 

SV diameter 
(SVs within 0-100 nm of AZ) 

44.98 ± 0.381 45.82 ± 0.426 P = 0.15 

N, number of animals; n, number of tomograms; SV, synaptic vesicle; AZ, active zone. SV 1023 
numbers within a certain distance of the AZ are normalized to 0.01 µm2 of AZ area. Values 1024 
indicate mean ± SEM. (red P-values = Mann-Whitney test, black P-values = unpaired t-test) 1025 

 1026 

 WT (n=63) KO (n=100)  
SV diameter 
(docked SVs, 0-2 nm of AZ) 

44.17 ± 0.64 46.08 ± 0.485 *P = 0.012 

n, number of docked SVs averaged over all tomograms of a given genotype 1027 

 1028 

Table 2: Electrophysiological analysis of autaptic cultures from CtBP1944KD and scr and upon 1029 

expression of selective synaptic or nuclear rescue constructs 1030 
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EGFP-CtBP1 

P>0.99 

EGFP-

CtBP1 

P>0.99 

CtBP1KD94

4 

P>0.99 

CtBP1KD944 

 P>0.99 

YFP-

CtBP2(NLS)-

CtBP1 

P>0.99 

YFP-

CtBP2(NLS)

-CtBP1 

P>0.99 

YFP-

CtBP2(NLS)

-CtBP1 

P>0.99 

EGFP-CtBP1  

P>0.99 

EPSC 35.4 CtBP1KD944 55.2 SC 78.1 SC 51.3 SC 
P=0.072 
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Charge 

(pC) 

± 4.5 

(n=77/5) 

P=0.0018 ± 5.9 

(n=72/5) 

P=0.0018 ± 8.5 

(n=62/5) 

<0.0001 ± 6.2 

(n=63/5) 
EGFP-CtBP1 

P<0.0001 

EGFP-

CtBP1 

P=0.4137 

CtBP1KD94

4 

P=0.4137 

CtBP1KD944 

P>0.99 

YFP-

CtBP2(NLS)-

CtBP1 

P=0.072 

YFP-

CtBP2(NLS)

-CtBP1 

P>0.99 

YFP-

CtBP2(NLS)

-CtBP1 

P=0.0436 

EGFP-CtBP1 

P=0.0436 

Pvr 

(%) 

7.0 

± 0.5 

(n=73/5) 

CtBP1KD944 

P<0.0001 

15.8 

± 0.9 

(n=64/5) 

SC 

P<0.0001 

14.2 

± 1.1 

(n=52/5) 

SC 

P<0.0001 

11.6 

± 1.0 

(n=62/5) 

SC 

 P>0.006 

EGFP-CtBP1 

P<0.0001 

EGFP-

CtBP1 

P>0.999 

CtBP1KD94

4 

P>0.999 

CtBP1KD944 

P=0.011 

YFP-

CtBP2(NLS)-

CtBP1 

P>0.006 

YFP-

CtBP2(NLS)

-CtBP1 

P=0.011 

YFP-

CtBP2(NLS)

-CtBP1 

P=0.1925 

EGFP-CtBP1 

P=0.1925 

n, number of neurons / independent cultures analyzed 1031 
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Mouse anti-CtBP1 BD Biosciences Cat#612042; 
RRID:AB_399429 

Mouse anti-CtBP2 BD Biosciences Cat#612044; RRID:
AB_399431 

Mouse anti-synaptotagmin1 lumenal domain Oyster550 Synaptic Systems Cat#105311; 
RRID:AB_993036 

Mouse anti-synaptotagmin1 lumenal domain CypHer5E-
labeled   

Synaptic Systems Cat#105311CpH; 
RRID:AB_2199307 

Mouse anti-rab5 Synaptic Systems Cat#108011; 
RRID:AB_887773 

Mouse anti-rab7 Abcam Cat#ab50533; 
RRID:AB_882241 

Mouse anti-phosphoserine/threonine BD Biosciences Cat#612548; 
RRID:AB_399843 

Mouse anti-GluA Oyster 550-labeled Synaptic Systems Cat#182411C3; 
RRID:AB_2619877 

Mouse anti- -tubulin Sigma Aldrich Cat# T9026; 
RRID:N/A 

Rabbit anti-CtBP1 Synaptic Systems Cat#222002; 
RRID:AB_2086638 

Rabbit anti-GFP Abcam Cat#ab6556; 
RRID:AB_305564 

Rabbit anti-SV2B Synaptic Systems Cat#119103; 
RRID:AB_2725759 

Rabbit anti-GAPDH Abcam Cat#ab37168; 
RRID:AB_732652 

Rabbit anti-synaptotagmin1 lumenal domain Oyster 550-
labeled 

Synaptic Systems Cat#105103C3; 
RRID:AB_887829 

Rabbit anti-synaptotagmin 1 lumenal domain Synaptic Systems Cat#105102; 
RRID:AB_887835 

Rabbit anti-dynamin1 Abcam Cat#ab3456; 
RRID:AB_303818 

Rabbit anti-rab22a Abcam Cat#ab137093; 
RRID:N/A 



Rabbit anti-Phospholipase D1 Cell Signaling 
technologies 

Cat#3832S; 
RRID:AB_2172256 

Rabbit anti-Homer1 Synaptic Systems Cat#160003; 
RRID:AB_887730 

Guinea pig anti-synapsin 1, 2 Synaptic Systems Cat#106004; 
RRID:AB_1106784 

Guinea pig anti-synaptophysin 1 Synaptic Systems Cat#101004; 
RRID:AB_1210382 

Guinea pig anti-Piccolo Dick et al, 2001 N/A 

Alexa Fluor 488 donkey anti-mouse secondary antibody ThermoFisher 
Scientific  

Cat#A21202; 
RRID:AB_141607   

Alexa Fluor 488 donkey anti-rabbit secondary antibody ThermoFisher 
Scientific 

Cat#A21206; 
RRID:AB_141708 

Alexa Fluor 488 donkey anti-guinea pig secondary 
antibody 

Dianova/Jackson 
ImmunoResearch 
Labs 

Cat#706-545-148; 
RRID:AB_2340472 

Cy3 donkey anti-mouse secondary antibody Dianova/Jackson 
ImmunoResearch 
Labs 

Cat#715-165-150; 
RRID:AB_2340813 

Cy3 donkey anti-rabbit secondary antibody Dianova/Jackson 
ImmunoResearch 
Labs 

Cat#711-165-152; 
RRID:AB_2307443 

Cy3 donkey anti-guinea pig secondary antibody Dianova/Jackson 
ImmunoResearch 
Labs 

Cat#706165-148; 
RRID:AB_2340460 

647 donkey anti-mouse secondary antibody ThermoFisher 
Scientific 

Cat#A31571; 
RRID:AB_162542 

Cy5 donkey anti-rabbit secondary antibody Dianova/Jackson 
ImmunoResearch 
Labs 

Cat#711-175-152; 
RRID:AB_2340607 

Cy5 donkey anti-guinea pig secondary antibody Dianova/Jackson 
ImmunoResearch 
Labs 

Cat#706-175-148; 
RRID:AB_2340462 

IRDye® 680 Donkey Anti-Mouse secondary antibody LI-COR Cat#926-68072; 
AB_10953628 

IRDye 680RD Goat anti-Rabbit secondary antibody LI-COR Cat#926-68071; 
RRID:AB_10956166 

IRDye 800CW Donkey anti-guinea pig secondary 
antibody 

LI-COR Cat#926-32411; 
RRID:AB_1850024 



Atto 647N- goat anti mouse secondary antibody Rockland Cat#610-156-121; 
RRID:AB_10894200 

Atto 647N- goat anti rabbit secondary antibody Rockland Cat#611-156-122; 
RRID:AB_10893043 

Abberior STAR 580- anti mouse secondary antibody Abberior GmbH Cat#2-0002-005-
1;  RRID:AB_262015
3 

Abberior STAR 580- anti rabbit secondary antibody Abberior GmbH Cat#2-0012-005-8; 
RRID:AB_2810981 

Bacterial and Virus Strains  

Biological Samples   

Chemicals, Peptides, and Recombinant Proteins 

APV Tocris 0106 CAS: 79055-
68-8 

CNQX Tocris 1045 CAS: 479347-
85-8 

bafilomycin A1 Merck/Millipore 196000 CAS: 88899-
55-2 

concanamycin A   Tocris 2656 CAS: 80890-
47-7 

brefeldin A Tocris 1231 CAS: 20350-
15-6 

VU 0155069 Tocris 3575 CAS: 1781834-
89-6 

Dynole 34-2 Abcam ab120463 CAS: 
1128165-88-7 

IPA 3 Tocris 3622 CAS: 42521-
82-4 

 

cOmplete  ULTRA Tablets Roche/Merck 05892791001 

PhosSTOP  Roche/Merck PHOSS-RO  

mCLING-ATTO647N Synaptic Systems 710 006AT1 
 

mCLING-DY654 Synaptic Systems 710 006DY1 
 



Critical Commercial Assays

 Qiagen PARN-126Z 

RNeasy Plus Mini Kit  Qiagen 74134 

µMACS GFP Isolation Kit Miltenyi Biotec 130-091-125 

µ Columns Miltenyi Biotec 130-042-701 

Deposited Data 

Raw and analyzed data  This paper N/A 

Experimental Models: Cell Lines 

HEK293T (human, embryonic kidney) ATCC CRL-3216 

Experimental Models: Organisms/Strains 

Rat: Wistar Charles River Wistar IGS Rat 

Rat: Sprague-Dawley Charles River CD® (Sprague 
Dawley) IGS Rat  

Mouse: C57BL/6N Charles River C57BL/6NCrl 

Mouse: Ctbp1tm1Sor (Ctbp1 KO)  Jackson Lab  (Stock No: 011054) 

Oligonucleotides 

CtBP1KD944 shRNA target sequence: 

GCTTCAACGTCCTCTTCTA 

Ivanova et al, 2015 N/A 

CtBP1KD467 shRNA target sequence: 

GCACAGTGGAGATGCCTAT 

Ivanova et al, 2015 N/A 

scrambled shRNA sequence: 

GACTTTACTGCCCCTTACT 

Ivanova et al, 2015 N/A 

Genotyping primers for CtBP1KO animals  

ctbp1_common; GAAGTACCAGTACAGGGGACG 

ctbp1_korev; GTTATCGCCGCTCCCGATTCG 

ctbp1_wtrev; CCCCAGCTGACTTGATGTCG 

Hildebrand and 
Soriano, 2002 

N/A 

Recombinant DNA 

Plasmid: ratio:sypHy Rose et al., 2013 N/A 

Plasmid: syp mOrange2 Egashira et al., 2015 N/A 



Lentiviral Plasmid: pCtBP1KD944 Ivanova et al., 2015 N/A 

Lentiviral Plasmid: scrambled Ivanova et al., 2015  

Lentiviral Plasmid: pCtBP1KD467 Ivanova et al., 2015 N/A 

Lentiviral Plasmid: pCtBP1KD944 + EGFP-CtBP1 This paper N/A 

Lentiviral Plasmid: pCtBP1KD944 + YFP-CtBP2(NLS)-
CtBP1 

This paper N/A 

Lentiviral Plasmid: pCtBP1KD944 + EGFP-CtBP1D355A This paper N/A 

Lentiviral Plasmid: pCtBP1KD944 + EGFP-CtBP1S147A This paper N/A 

psPAX2 gift from Didier Trono Addgene Plasmid 
#12260 

p-CMV-VSV-G Stewart et al., 2003 Addgene Plasmid 
#8454 

Software and Algorithms 

ImageJ National Institute of 
Health 

https://imagej.nih.go
v/ 

Openview Tsuriel et al., 2006 N/A 

custom script for STED analysis (MATLAB) This paper N/A 

custom script for pHluorin analysis (ImageJ) This paper N/A 

IMOD package Kremer et al., 1996 https://bio3d.colorad
o.edu/imod/ 

Huygens Professional (SVI,15.10.1) Scientific 
Volume Imaging 

https://svi.nl/Huygen
s-Professional 

Imaris 8.3 Bitplane, Oxford 
Instruments 

https://imaris.oxinst.c
om/ 

LightCycler® 480 Software Roche https://www.roche.co
m/ 

AxoGraph X software Axograph Scientific https://axograph.com
/ 

Prism 7 and 8 software GraphPad Software https://www.graphpa
d.com/ 

Other 

 



Figure condition mean±SEM n = number 
of cells or 
coverslips/ 
N= number 
of neuronal 
preparations  

Comparison P Statistical test

Fig1B scr  1.00±0.10 3 
experiments 

scr vs 
CtBP1KD944 <0,0001 

one-way 
ANOVA with 

multiple 
comparison test  

CtBP1KD944 0.28±0.02 scr vs 
CtBP1KD467 

<0,0001 
CtBP1KD467 0.55±0.04 

Fig1C scr basal 1.00±0.05 27 cells/3 scr basal vs 
CtBP1KD944 
basal 

<0,0001 one-way 
ANOVA with 

multiple 
comparisons 
test 
 

CtBP1KD944 
basal 

0.49±0.03 27 cells/3 scr basal vs 
CtBP1KD467 
basal 

<0,0001 

CtBP1KD467 
basal 

0.45±0.04 27 cells/3 

scr KCl 1.00±0.03 10 cells/2 scr KCl vs 
CtBP1KD944 KCl 

<0,0001 one-way 
ANOVA with 

multiple 
comparisons 
test 

CtBP1KD944 KCl 0.44±0.02 10 cells/2 scr KCl vs 
CtBP1KD467 KCl 

<0,0001 
CtBP1KD467 KCl 0.66±0.03 9 cells/2 

scr TTX 1.00±0.14 10 cells/2 scr TTX vs 
CtBP1KD944 TTX <0,0001 

one-way 
ANOVA with 

multiple 
comparisons 
test 

CtBP1KD944 TTX 0.39±0.04 10 cells/2 scr TTX vs 
CtBP1KD467 TTX 

<0,0001 

CtBP1KD467 TTX 0.20±0.02 9 cells/2 

Fig1G: RRP scr  0.17±0.03 10 
coverslips/3 

scr vs 
CtBP1KD944 

ns unpaired t test 
 

CtBP1KD944 0.14±0.03 8 
coverslips/3 

scr vs 
CtBP1KD467 

ns 

RRCtBP1KD467 0.14±0.03 8 
coverslips/3 

Fig1H: TRP scr  0.51±0.05 10 
coverslips/3 

scr vs 
CtBP1KD944 0,0067 

unpaired t test 
 

CtBP1KD944 0.30±0.04 8 
coverslips/3 

scr vs 
CtBP1KD467 

0,0076 
CtBP1KD467 0.31±0.04 8 

coverslips/3 
Fig1J scr 5Hz 25.26±3.22 7 

coverslips/3 
scr 5Hz vs 
CtBP1KD944 5Hz 0,0389 

unpaired t test 
 

CtBP1KD944 5Hz 44.33±6.63 10 
coverslips/3 

scr vs 
CtBP1KD467 

0,0207 
CtBP1KD467 5Hz 43.11±2.80 7 

coverslips/3 
Fig1K scr 20Hz 24.76±4.11 6 

coverslips/2 
scr 20Hz vs 
CtBP1KD944 
20Hz 0,0064 

unpaired t test 
 

CtBP1KD944 
20Hz 

43.11±2.80 5 
coverslips/2 

scr 20Hz vs 
CtBP1KD467 
20Hz 

0,0332 
CtBP1KD467 
20Hz 

53.65±10.96 6 
coverslips/2 

Fig1L scr 40Hz 28.13±2.60 7 
coverslips/2 

scr 40Hz vs 
CtBP1KD944 
40Hz 

0,0213 unpaired t test 
 

CtBP1KD944 
40Hz 

85.58±25.16 5 
coverslips/2 

scr 40Hz vs 
CtBP1KD467 
40Hz 

0,0312 

CtBP1KD467 
40Hz 

70.43±18.40 6 
coverslips/2 

 

Data related to the Figure 2 can be find in the Table 1 

 



Figure condition mean±SEM n = number 
of cells or 
coverslips/ 
N= number 
of neuronal 
preparations  

Comparison P Statistical test

Fig.3A scr 1.00±0.09 76 cells/5 
 

scr vs 
CtBP1KD944 

<0,0001 Kruskal-Wallis 
one-way 
ANOVA with 
Dunn's multiple 
comparison test 

CtBP1KD944 1.59±0.12 72 cells/5 
EGFP-CtBP1 in 
CtBP1KD944 

2.11±0.12 62 cells/5 scr vs EGFP-
CtBP1 in 

CtBP1KD944 

<0,0001 

YFP-CtBP2(NLS)-
CtBP1 in 
CtBP1KD944 

1.22±0.11 63 cells/5 scr vs YFP-
CtBP2(NLS)-

CtBP1 in 
CtBP1KD944 

ns 

Fig.3C  scr 30.25±1.55 69 cells/5 scr vs 
CtBP1KD944 

ns Kruskal-Wallis 
one-way 
ANOVA with 
Dunn's multiple 
comparison test 

CtBP1KD944 28.91±1.19 70 cells/5 
EGFP-CtBP1 in 
CtBP1KD944 

30.04±1.10 64 cells/5 scr vs EGFP-
CtBP1 in 

CtBP1KD944 

ns 

YFP-CtBP2(NLS)-
CtBP1 in 
CtBP1KD944 

28.81±1.22 62 cells/5 scr vs YFP-
CtBP2(NLS)-

CtBP1 in 
CtBP1KD944 

ns 

Fig.3D scr 8.24±0.83 69 cells/5 scr vs 
CtBP1KD944 

ns Kruskal-Wallis 
one-way 
ANOVA with 
Dunn's multiple 
comparison test 

CtBP1KD944 9.06±0.75 70 cells/5 
EGFP-CtBP1 in 
CtBP1KD944 

12.14±0.91 64 cells/5 scr vs EGFP-
CtBP1 in 

CtBP1KD944 

0,0003 

YFP-CtBP2(NLS)-
CtBP1 in 
CtBP1KD944 

9.45±0.87 61 cells/5 scr vs YFP-
CtBP2(NLS)-

CtBP1 in 
CtBP1KD944 

ns 

Fig.3F scr  29 cells/2 scr vs 
CtBP1KD944 

ns one-way 
ANOVA with 
Sidak test 

CtBP1KD944  29 cells/2 
EGFP-CtBP1 in 
CtBP1KD944 

 25 cells/2 scr vs EGFP-
CtBP1 in 

CtBP1KD944 

ns 

YFP-CtBP2(NLS)-
CtBP1 in 
CtBP1KD944 

 28 cells/2 scr vs YFP-
CtBP2(NLS)-

CtBP1 in 
CtBP1KD944 

ns 

Fig.3G scr 1.00±0.12 29 cells/2 scr vs 
CtBP1KD944 

0,0358 one-way 
ANOVA with 
Sidak test 

CtBP1KD944 1.76±0.22 29 cells/2 
EGFP-CtBP1 in 
CtBP1KD944 

2.17±0.25 25 cells/2 scr vs EGFP-
CtBP1 in 

CtBP1KD944 

0,0006 

YFP-CtBP2(NLS)-
CtBP1 in 
CtBP1KD944 

1.34±0.22 28 cells/2 scr vs YFP-
CtBP2(NLS)-

CtBP1 in 
CtBP1KD944 

ns 

Fig.3I scr 1.00±0.15 73 cells/5 scr vs 
CtBP1KD944 

ns Kruskal-Wallis 
one-way 
ANOVA with 
Dunn's multiple 
comparison test 
 

CtBP1KD944 0.80±0.09 64 cells/5 
EGFP-CtBP1 in 
CtBP1KD944 

0.98±0.11 57 cells/5 scr vs EGFP-
CtBP1 in 

CtBP1KD944 

ns 

YFP-CtBP2(NLS)-
CtBP1 in 
CtBP1KD944 

0.89±0.71 63 cells/5 scr vs YFP-
CtBP2(NLS)-

CtBP1 in 
CtBP1KD944 

ns 

Fig.3J scr 1±0.07 73 cells/5 scr vs 
CtBP1KD944 

<0,0001 Kruskal-Wallis 
one-way 
ANOVA with 
Dunn's multiple 
comparison test 

CtBP1KD944 2.27±0.14 64 cells/5 CtBP1KD944 vs 
YFP-CtBP2(NLS)-

CtBP1 in 
CtBP1KD944 

0,0021 

EGFP-CtBP1 in 
CtBP1KD944 

2.00±0.19 57 cells/5 scr vs EGFP-
CtBP1 in 

CtBP1KD944 

<0,0001 

YFP-CtBP2(NLS)-
CtBP1 in 
CtBP1KD944 

1.70±0.16 63 cells/5 scr vs YFP-
CtBP2(NLS)-

CtBP1 in 
CtBP1KD944 

0,0009 



Fig.3K scr 1.02±0.03 78 cells/5 scr vs 
CtBP1KD944 

<0,0001 Kruskal-Wallis 
one-way 
ANOVA with 
Dunn's multiple 
comparison test 

CtBP1KD944 0.74±0.02 73 cells/5 CtBP1KD944 vs 
YFP-CtBP2(NLS)-

CtBP1 in 
CtBP1KD944 

<0,0001 

EGFP-CtBP1 in 
CtBP1KD944 

0.81±0.03 66 cells/5 scr vs EGFP-
CtBP1 in 

CtBP1KD944 

<0,0001 

YFP-CtBP2(NLS)-
CtBP1 in 
CtBP1KD944 

0.92±0.03 64 cells/5 scr vs YFP-
CtBP2(NLS)-

CtBP1 in 
CtBP1KD944 

ns 
(0,0511) 

Fig.3L 
(averaged 
EPSC of last 20 
stimuli) 

scr 0.79±0.04 78 cells/5 scr vs 
CtBP1KD944 

<0,0001 Kruskal-Wallis 
one-way 
ANOVA with 
Dunn's multiple 
comparison test 

CtBP1KD944 0.53±0.02 73 cells/5 CtBP1KD944 vs 
YFP-CtBP2(NLS)-

CtBP1 in 
CtBP1KD944 

<0,0001 

EGFP-CtBP1 in 
CtBP1KD944 

0.59±0.03 66 cells/5 scr vs EGFP-
CtBP1 in 

CtBP1KD944 

0,0027 

YFP-CtBP2(NLS)-
CtBP1 in 
CtBP1KD944 

0.52±0.02 64 cells/5 scr vs YFP-
CtBP2(NLS)-

CtBP1 in 
CtBP1KD944 

<0,0001 

 

Figure condition mean±SEM n = number 
of cells or 
coverslips/ 
N= number 
of neuronal 
preparations  

Comparison P Statistical test 

Fig.4B scr 1.00±0.05 48 cells/5 scr vs 
CtBP1KD944 

<0,0001 one-way 
ANOVA with 

multiple 
comparison test 

CtBP1KD944 0.37±0.04 49 cells/5 CtBP1KD944 vs 
YFP-CtBP2(NLS)-

CtBP1 in 
CtBP1KD944 

ns 

CtBP1KD944 vs 
EGFP-CtBP1 in 
CtBP1KD944 

<0,0001 

CtBP1KD944 vs 
EGFP-

CtBP1D355A in 
CtBP1KD944 

ns 

EGFP-CtBP1 in 
CtBP1KD944 

0.80±0.07 29 cells/5 scr vs EGFP-
CtBP1 in 

CtBP1KD944 

ns 

EGFP-CtBP1 
D355A in 
CtBP1KD944 

0.50±0.06 30 cells/5 scr vs EGFP-
CtBP1D355A in 
CtBP1KD944 

<0,0001 

YFP-CtBP2(NLS)-
CtBP1 in 
CtBP1KD944 

0.44±0.04 29 cells/5 scr vs YFP-
CtBP2(NLS)-

CtBP1 in 
CtBP1KD944 

<0,0001 



Fig.4D scr 23.20±2.27 19 
coverslips/5 

scr vs 
CtBP1KD944 

P=0,0008
 

Unpaired t test

CtBP1KD944 45.66±5.66 19 
coverslips/5 

CtBP1KD944 vs 
YFP-CtBP2(NLS)-

CtBP1 in 
CtBP1KD944 

ns 

CtBP1KD944 vs 
EGFP-CtBP1 in 
CtBP1KD944 

P=0,0033 

CtBP1KD944 vs 
EGFP-

CtBP1D355A in 
CtBP1KD944 

ns 

EGFP-CtBP1 in 
CtBP1KD944 

24.42±2.25 15 
coverslips/5 

scr vs EGFP-
CtBP1 in 

CtBP1KD944 

ns 

EGFP-CtBP1 
D355A in 
CtBP1KD944 

38.70±5.55 19 
coverslips/5 

scr vs EGFP-
CtBP1D355A in 
CtBP1KD944 

P=0,0137 

YFP-CtBP2(NLS)-
CtBP1 in 
CtBP1KD944 

53.03±7.04 17 
coverslips/5 

scr vs YFP-
CtBP2(NLS)-

CtBP1 in 
CtBP1KD944 

P=0,0002 

Fig.4F scr 1.67±0.17 10 
coverslips/3 

scr vs 
CtBP1KD944 

P=0,0040 unpaired t test 

CtBP1KD944 1.02±0.08 9 
coverslips/3 

CtBP1KD944 vs 
YFP-CtBP2(NLS)-

CtBP1 in 
CtBP1KD944 

ns 

CtBP1KD944 vs 
EGFP-CtBP1 in 
CtBP1KD944 

P=0,0448 

EGFP-CtBP1 in 
CtBP1KD944 

1.41±0.16 10 
coverslips/3 

scr vs EGFP-
CtBP1 in 

CtBP1KD944 

ns 

YFP-CtBP2(NLS)-
CtBP1 in 
CtBP1KD944 

1.08±0.04 11 
coverslips/3 

scr vs YFP-
CtBP2(NLS)-

CtBP1 in 
CtBP1KD944 

P=0,0025 

 

Figure condition mean±SEM n = number of 
cells or 
coverslips/ N= 
number of 
neuronal 
preparations  

Comparison P  Statistical test 

Fig.5B  
0-100nm 

dynamin1 43±3 5 cells/2 dynamin1 vs rab5 <0,0001 two way 
ANOVA with 

multiple 
comparison test 

rab5 7±1 6 cells/2 
rab7 8±1 6 cells/2 dynamin1 vs rab7 <0,0001 
rab22 6±1 5 cells/2 dynamin1 vs rab22 <0,0001 

100-200 nm dynamin1 42±1 5 cells/2 dynamin1 vs rab5 <0,0001 two way 
ANOVA with 

multiple 
comparison test 

rab5 21±1 6 cells/2 
rab7 21±3 6 cells/2 dynamin1 vs rab7 <0,0001 
rab22 21±2 5 cells/2 dynamin1 vs rab22 <0,0001 

Fig.5D scr 1.00±0.05 26 
coverslips/3 

scr vs CtBP1KD944 <0,0001 one-way 
ANOVA with 

multiple 
comparison test 
 scr + Dynole 34-2 0.18±0.05 30 

coverslips/3 
scr vs scr + Dynole 

34-2 
<0,0001 

CtBP1KD944 0.52±0.04 26 
coverslips/3 

CtBP1KD944 vs. 
CtBP1KD944 + 

Dynole 34-2 

<0,0001 

CtBP1KD944 + 
Dynole 34-2 

0.09±0.01 28 
coverslips/3 

scr + Dynole 34-2  
vs 

CtBP1KD944 + 
Dynole 34-2 

<0,0001 

 



Figure condition mean±SEM n = number of 
cells or 
coverslips/ N= 
number of 
neuronal 
preparations  

Comparison P Statistical test

Fig.6A scr 23.84±3.65 7 coverslips/2 scr vs scr + BFA P=0,0261 unpaired  t tests 

scr + BFA 40.93±5.88 5 coverslips/2 
Fig.6B CtBP1KD944 44.64±7.75 7 coverslips/2 CtBP1KD944  

vs 
CtBP1KD944 + BFA 

ns unpaired  t tests 
CtBP1KD944 + 
BFA 

50.97±7.08 7 coverslips/2 

Fig.6C scr 23.84±3.65 7 coverslips/2 scr vs scr + PLD1inh P=0,0359 unpaired t tests 
scr + PLD1inh 46.41±9.33 6 coverslips/2 

Fig.6D CtBP1KD944 44.64±7.75 7 coverslips/2 CtBP1KD944  
vs 

CtBP1KD944 + 
PLD1inh 

ns unpaired  t tests 
CtBP1KD944 + 
PLD1inh 

40.60±8.85 6 coverslips/2 

Fig6F scr 1.00 ± 0.07 19 cells/2  scr vs CtBP1KD944 <0,0001 unpaired  t tests 
CtBP1KD944 0.32 ± 0.06 15 cells/2 

Fig.6H EGFP-CtBP1 in 
CtBP1KD944 

1.00±0.18 5 cells/2 EGFP-CtBP1 vs 
EGFP-CtBP1- 

S147A 

P=0,0050 unpaired  t tests 

EGFP-CtBP1- 
S147A in 
CtBP1KD944 

0.22±0.10 5 cells/2 

Fig.6J  
100-200nm 

EGFP-CtBP1 in 
CtBP1KD944 

44.17±1.93 5 cells/2 EGFP-CtBP1 vs 
EGFP-CtBP1- 

S147A 

P=0,0073 two-way 
ANOVA with 

comparison test 
EGFP-CtBP1- 
S147A in 
CtBP1KD944 

37.69±1.99 5 cells/2 

 

Figure condition mean±SEM n = number of 
cells or 
coverslips/ N= 
number of 
neuronal 
preparations  

Comparison P  Statistical test 

Fig.7B control 1.00±0.02 8 experiments control vs IPA3 P=0,0013 -test 
IPA3 1.73±0.14 8 experiments 

Fig.7D control 1.00±0.02 7 experiments control vs IPA3 P=0,0015 -test 
IPA3 0.53±0.08 6 experiments 

Fig.7F 0-
100nm 

EGFP-CtBP1 
control 

31.91±3.45 5 cells/2 EGFP-CtBP1 control 
vs. EGFP-CtBP1 

stimulated  

<0,0001 two way 
ANOVA with 
T
multiple 
comparison test 
 

EGFP-CtBP1 
stimulated 

42.62±158 5 cells/2 

EGFP-
CtBP1S147A 
control 

44.18±0.84 5 cells/2 EGFP-CtBP1 control 
vs. EGFP-

CtBP1S147A control 

<0,0001 

EGFP-
CtBP1S147A 
stimulated 

42.43±1.99 5 cells/2 EGFP-CtBP1 control 
vs. EGFP-

CtBP1S147A 
stimulated 

<0,0001 

 



Figure condition mean±SEM n = number of 
cells or 
coverslips/ N= 
number of 
neuronal 
preparations  

Comparison P Statistical test

FigS1B 

S
V

2B
 scr  1.00±0.06  9 cells/2 scr vs CtBP1KD944  ns one-way ANOVA 

multiple 
comparisons test 

CtBP1KD944  1.00±0.08 14 cells/2 
CtBP1KD467  1.18±0.09 20 cells/2 scr vs CtBP1KD467 ns 

sp
h 

scr  1.00±0.06 12 cells/2 scr vs CtBP1KD944  ns one-way ANOVA 

multiple 
comparisons test 

CtBP1KD944  0.99±0.08 12 cells/2 
CtBP1KD467  1.18±0.07 12 cells/2 scr vs CtBP1KD467  ns 

S
yn

 

scr  1.00±0.06 9 cells/2 scr vs CtBP1KD944  ns one-way ANOVA 

multiple 
comparisons test 

CtBP1KD944  1.06±0.10 14 cells/2 
CtBP1KD467  1.23±0.16 20 cells/2 scr s CtBP1KD467  ns 

ho
m

er
 

1 

scr  1.00±0.16 10 cells/2 scr vs CtBP1KD944  ns one-way ANOVA 

multiple 
comparisons test 

CtBP1KD944  0.93±0.07 10 cells/2 
CtBP1KD467  0.83±0.09 10 cells/2 scr vs CtBP1KD467  ns 

G
lu

A
1 

scr  1.00±0.08 10 cells/2 scr vs CtBP1KD944  ns one-way ANOVA 

multiple 
comparisons test 

CtBP1KD944  1.14±0.12 10 cells/2 
CtBP1KD467  1.06±0.23 10 cells/2 scr vs CtBP1KD467  ns 

FigS1D 

C
tB

P
2 

scr 1.00±0.08 41 cells/2 scr CtBP2 vs 
CtBP1KD944 CtBP2 

 one-way ANOVA 
 

multiple 
comparisons test 

CtBP1KD944  0.78±0.04 38 cells/2 
CtBP1KD467  0.86±0.06 38 cells/2 scr CtBP2 vs 

CtBP1KD467 CtBP2 
 

 

Figure condition mean±SEM n = number of 
cells or 
coverslips/ 
N= number of 
neuronal 
preparations  

Comparison Adjusted P  Statistical test 

FigS2B 
H 

C
tB

P
1 

WT 1.00±0.13 3 mice WT vs KO P=0,010525 multiple t-test with 
Holm-Sidak 
method for 
significance testing 

KO 0.04±0.03 3 mice 

C
tB

P
2 

WT 1.00±0.14 3 mice WT vs KO ns 
KO 1.22±0.16 3 mice 

B
sn

 

WT 1.00±0.09 3 mice WT vs KO ns 
KO 0.87±0.07 3 mice 

P
cl

o 
 WT 1.00±0.02 3 mice WT vs KO ns 

KO 0.83±0.04 3 mice 

S
tg

1 
 

WT 1.00±0.15 3 mice WT vs KO ns 
KO 0.79±0.14 3 mice 

P2 

C
tB

P
1 

 WT 1.00±0.04 3 mice WT vs KO P=0,000090 multiple t-test with 
Holm-Sidak 
method for 
significance testing 

KO 0.01±0.01 3 mice 

C
tB

P
2 

 WT 1.00±0.14 3 mice WT vs KO ns 
KO 0.84±0.01 3 mice 

B
sn

  

WT 1.00±0.05 3 mice WT vs KO ns 
KO 1.1±0.07 3 mice 

P
cl

o WT 1.00±0.02 3 mice WT vs KO ns 

KO 0.87±0.09 3 mice 

S
yt

1 
 WT 1.00±0.01 3 mice WT vs KO ns 

KO 0.92±0.03 3 mice 

Fig.S2D WT 0.19±0.02 5 coverslips/2 WT vs KO ns  
t test KO 0.15±0.01 6 coverslips/2 

Fig.S2E WT 0.57±0.05 5 coverslips/2 WT vs KO P=0,0043 Mann Whitney test 
KO 0.45±0.01 6 coverslips/2 

Fig.S2F WT 1.00±0.12 11 cells/2 WT vs KO ns 



KO 1.23±0.15 11 cells/2 t test
Fig.S2G WT 15.11±1.45 7 coverslips/2 WT vs KO 

P=0,0036 t test KO 22.18±1.32 7 coverslips/2 

 

Figure condition mean±SEM n = number 
of neuronal 
preparations  

Comparison P  Statistical test 

Fig.S3B  scr  1.00±0 4  scr vs CtBP1KD944  <0,0001 One way 
ANOVA with 

multiple 
comparison 
test 

CtBP1KD944  1.24±0.02 4  CtBP1KD944 vs 
CtBP1KD944 + YFP-
CtBP2(NLS)-CtBP1  

<0,0001 

CtBP1KD944 + 
YFP-CtBP2(NLS)-
CtBP1 

0.59±0.02 4  scr vs CtBP1KD944 + 
YFP-CtBP2(NLS)-CtBP1  

<0,0001 

Fig.S3C scr  1.00±0 4  scr vsCtBP1KD944  P=0,0002 One way 
ANOVA with 

multiple 
comparison 
test 

CtBP1KD944  2.11±0.04 4  CtBP1KD944 vs 
CtBP1KD944 + YFP-
CtBP2(NLS)-CtBP1  

ns 

CtBP1KD944 + 
YFP-CtBP2(NLS)-
CtBP1  

1.34±0.20 4  scr vs CtBP1KD944 + 
YFP-CtBP2(NLS)-CtBP1  

P=0,0030 

 

Figure bin condition mean n  Comparison P 
 

Statistical test 

Fig.S5A dynamin1 N/A 5 effect of 
stimulation 

ns Two way ANOVA with 
 dynamin 1 stim N/A 5 

Fig.S5B Syt1 N/A 5 effect of 
stimulation 

ns Two way ANOVA with 
 Syt1 stim N/A 5 

Fig.S5C rab5  6 effect of 
stimulation 

<0,0001 Two way ANOVA with 
 rab5 stim 6 

0-300nm rab5 60,55  rab5 vs. rab5 stim <0,0001 
rab5 stim 52,81 

0-400nm rab5 79,94  <0,0001 
rab5 stim 72,27 

0-500nm rab5 90,38  
P=0,0059 rab5 stim 84,88 

Fig.S5D rab7 6 effect of 
stimulation 

<0,0001 Two way ANOVA with 
 rab7 stim 6 

0-300nm  rab7 64,75  rab5 vs. rab5 stim P=0,0046 
rab7 stim 48,81 

0-400nm rab7 80,65  P=0,0040 
rab7 stim 64,53 

0-500nm rab7 89,87  
P=0,0244 

rab7 stim 76,20 
Fig.S5E rab21  6 effect of 

stimulation 
ns Two way ANOVA with 

 rab21 stim  6 
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