

Contents lists available at ScienceDirect

Stem Cell Research

journal homepage: www.elsevier.com/locate/scr

Lab Resource: Genetically-Modified Multiple Cell Lines

CRISPR/Cas9-mediated generation of hESC lines with homozygote and heterozygote p.R331W mutation in CTBP1 to model HADDTS syndrome

Enes Yağız Akdaş^a, Soeren Turan^b, Debarpan Guhathakurta^a, Arif Ekici^c, Seda Salar^a, D. Chichung Lie^b, Beate Winner^d, Anna Fejtova^{a,*}

^a Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

^b Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

^c Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

^d Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

ABSTRACT

C-terminal Binding Protein 1 (CTBP1) is a ubiquitously expressed transcriptional co-repressor and membrane trafficking regulator. A recurrent de novo c.991C>T mutation in CTBP1 leads to expression of p.R331W CTBP1 and causes hypotonia, ataxia, developmental delay, and tooth enamel defects syndrome (HADDTS), a rare early onset neurodevelopmental disorder. We generated hESCs lines with heterozygote and homozygote c.991C>T in CTBP1 using CRISPR/Cas9 genome editing and validated them for genetic integrity, off-target mutations, and pluripotency. They will be useful for investigation of HADDTS pathophysiology and for screening for potential therapeutics.

Recource Table

Resource Table		(continued)	
Unique stem cell lines identifier	1. UKERe008-A-1 2. UKERe008-A-2	Evidence of the reprogramming transgene loss (including genomic copy if applicable)	Not applicable
	3. UKERe008-A-3	Cell culture system used	Feeder-free cell culture
	4. UKERe008-A-4	Type of Genetic Modification	CRISPR-cas9 mediated substitutions
	5. UKERe008-A-5 6. UKERe008-A-6		g.1,213,033C>T (exonic, corresponds to
	7. UKERe008-A-7	Associated disease	C.991C>1) and g.1,213,28C>1 (Intronic) Hypotonia ataxia developmental delay
	8. UKERe008-A-8	Absociated discuse	and tooth enamel defect syndrome
	9. UKERe008-A-9		(HADDTS)
Alternative name(s) of stem cell lines	Not applicable	Gene/locus	rs869320802
Institution	Department of Psychiatry and Psychotherapy, Universitätsklinikum	Method of modification/site-specific nuclease used	CRISPR eSpCas9
	Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen,	Site-specific nuclease (SSN) delivery method	Plasmid nucleofection
	Germany	All genetic material introduced into	pCAG-eSpCas9-GFP-U6-gRNA plasmid,
Contact information of the reported cell line distributor	Juliana MontiJuliana.monti@uk-erlangen. de	the cells	single-stranded oligonucleotide donor DNA (ssODN)
Type of cell lines	H9 human embryonic stem cell line (WA09)	Analysis of the nuclease-targeted allele status	Sanger sequencing for target region.
Origin	Human	Method of the off-target nuclease	Sanger sequencing for possible off-target
Additional origin info (applicable for	Sex: Female	activity surveillance	regions.
human ESC or iPSC)	Ethnicity: unknown	Name of transgene	Not applicable
Cell Source	Line H9 (WA09) (WiCell Research	Eukaryotic selective agent resistance	eGFP-based FACS selection
	Institute, Inc.)	(including inducible/gene	
Method of reprogramming	Not applicable	expressing cell-specific)	
Cionality	Cional selection was achieved using FACS.	Inducible/constitutive system details	Not applicable
	(continued on next column)		(continued on next page)

* Corresponding author. E-mail address: Anna.Fejtova@uk-erlangen.de (A. Fejtova).

https://doi.org/10.1016/j.scr.2022.103012 Received 29 November 2022; Accepted 28 December 2022

Available online 30 December 2022

1873-5061/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

UKERe008-A-9

Scale bars: 20µM

Fig. 1. Generation and validation of new cell lines

Table 1

Summary of cell lines

hESC line names	Gender	Genotype of CtBP1 locus	Disease
UKERe008- A-1	Female	WT / WT	Control
UKERe008- A-2	Female	WT / WT	Control
UKERe008- A-3	Female	WT / WT	Control
UKERe008- A-4	Female	g.1,213,033C>T and g.1,213,028C>T / WT	HADDTS syndrome
UKERe008- A-5	Female	g.1,213,033C>T and g.1,213,028C>T / WT	HADDTS syndrome
UKERe008- A-6	Female	g.1,213,033C>T and g.1,213,028C>T / WT	HADDTS syndrome
UKERe008- A-7	Female	g.1,213,033C>T and g.1,213,028C>T / g.1,213,033C>T and g.1,213,039C>T	Strongest phenotype for HADDTS syndrome
UKERe008- A-8	Female	g.1,213,023C>T and g.1,213,028C>T / g.1,213,033C>T and g.1,213,033C>T and g.1,213,028C>T	Strongest phenotype for HADDTS syndrome
UKERe008- A-9	Female	g.1,213,033C>T and g.1,213,028C>T / g.1,213,033C>T and g.1,213,033C>T	Strongest phenotype for HADDTS syndrome

(continued)

Date archived/stock date	11.10.2021
Cell line repository/bank	https://hpscreg.eu/cell-line/UKERe008-
	A-1
	https://hpscreg.eu/cell-line/UKERe008-
	A-2
	https://hpscreg.eu/cell-line/UKERe008-
	A-3
	https://hpscreg.eu/cell-line/UKERe008-
	A-4
	https://hpscreg.eu/cell-line/UKERe008-
	A-5
	https://hpscreg.eu/cell-line/UKERe008-
	A-6
	https://hpscreg.eu/cell-line/UKERe008-
	(continued on next column)

Table 2

Characterization and validation

(continued)

	A-7
	https://hpscreg.eu/cell-line/UKERe008-
	A-8
	https://hpscreg.eu/cell-line/UKERe008-
	A-9
Ethical/GMO work approvals	RKI AZ: 3.04.02/0164
Addgene/public access repository	Not applicable
recombinant DNA sources'	
disclaimers (if applicable)	

1. Resource Utility

The mechanism by which the CTBP1 mutation p.R331W leads to HADDTS is unclear. Here described hESC lines are useful disease models to study the impact of mutation on development and cellular functions, to understand HADDTS pathophysiology, and for potential treatment development.

2. Resource Details

C-terminal Binding Protein 1 (CTBP1) is a ubiquitously expressed transcriptional co-repressor and membrane trafficking regulator. Till date, 17 patients with CTBP1-linked Hypotonia, Ataxia, Developmental Delay, and Tooth enamel defects Syndrome (HADDTS) were reported (Beck et al., 2016; Wong et al., 2022). CTBP1 mutation c.991C>T mutation leads to p.R331W change in the substrate binding region of CTBP1 thereby affecting its interaction with its targets. To investigate HADDTS pathophysiology in various relevant tissues, we generated a human embryonic stem cell (hESC)-based disease model. The experimental flow is depicted in Fig. 1A. We employed single-stranded oligo DNA (ssODN)mediated homologous DNA repair upon a Cas9-mediated double-strand DNA break strategy to introduce HADDTS-linked c.991C>T mutation into WA09 hESCs. Additionally, an intronic g.1,213,028C>T substitution was introduced for silencing of Cas9 restriction site as described earlier (Fig 1B) (Turan et al., 2019). Guide RNAs (gRNA) were designed in silico and validated using T7 endouclease assay (Fig 1C). The most effective gRNA was subcloned into pCAG-eSpCas9-GFP-U6-gRNA plasmids, which were nucleofected along with ssODN into hESCs.

Classification	Test	Result	Data
Morphology	Phase contrast image	stem cell-like morphology	Fig. 1I
Pluripotency status evidence for the	Qualitative analysis:	Pluripotency markers: POU5F1,	Fig. 1J
described cell line	Immunocytochemistry	NANOG and SOX2	
	Quantitative analysis: Immunocytochemistry counting	Percentage of cells positive for	Fig. S1B
		POU5F1 and NANOG was assessed	
Karyotype	Affymetrix CytoScan HD SNP based Karyotyping	46 XX	Fig. S1C
		Resolution filtered for >20kb	
Genotyping for the desired genomic	Sequencing	g.1,213,033C>T and g.1,213,028C>T	Fig. 1E
alteration/allelic status of the gene of interest	Transgenic region PCR-RFLP	Loss of restriction digest	Fig. 1D
Verification of the absence of random plasmid integration events	PCR	Negative PCR	submitted in archive with journal
Parental and modified cell line genetic	PowerPlex® 21 System	STR Analysis: 21 sites were tested and	submitted in the
identity evidence		all the loci matched the parental line	archive with journal
Mutagenesis / genetic modification	Sequencing (genomic DNA PCR)	Mutation confirmed	Fig. 1E
outcome analysis	qRT-PCR	CtBP1 ^{c.991C>T} mRNA is stable	Fig. 1H
	Western blotting	CtBP1 ^{p.R331W} protein is translated	Fig. 1F,G
Off-target nuclease analysis	PCR and Sanger sequencing of top predicted off-target sites	No mutation detected	Fig. S1A
Specific pathogen-free status	Mycoplasma	No mycoplasma detected	submitted in the archive with journal
Multilineage differentiation potential	Trilineage differentiation followed by ICC for markers for endoderm	All clones have proven to differentiate	Fig. F1J
	(SOX17 & FOXA2), ectoderm (NES & PAX6), and mesoderm: HAND1 & TBXT)	into the 3 germ layers	
Donor screening	HIV $1 + 2$ Hepatitis B, Hepatitis C	Not applicable	
Genotype - additional histocompatibility	Blood group genotyping	Not applicable	
info	HLA tissue typing	Not applicable	

Table 3Reagents and primers used in study

Antibodies used for immunocytochemistry/flow-cytometry				
	Antibody	Dilution	Company Cat #	RRID
Gene of interest	Mouse anti-CTBP1	1:250	DB Biosciences Cat# 612042	RRID:AB_399429
Pluripotency Marker	Rabbit anti-SOX2	1:300	Cell Signalling Cat# 3579	RRID:AB_2195767
Pluripotency Marker	Mouse anti- POU5F1 (C-10)	1:300	Santa Cruz Cat# Sc-5279	RRID: AB_628051
Pluripotency Marker	Goat anti-NANOG	1:300	R&D Systems Cat# AF1997	RRID:AB 355097
Mesoderm Marker	Goat anti-HAND1	1:300	R&D Systems Cat# 3168	RRID:AB_2115853
Mesoderm Marker	Mouse anti-TBXT	1:300	SinoBiological Cat# 100338-MM07	RRID:AB_2923107
Endoderm Marker	Mouse anti-SOX17	1:300	Biolegend Cat # 698502	RRID:AB_2687317
Endoderm Marker	Goat anti-FOXA2	1:300	R&D Systems Cat# AF2400	RRID:AB_2294104
Ectoderm Marker	Rabbit anti-PAX6	1:300	Biolegend Cat # 901301	RRID:AB_2565003
Ectoderm Marker	Mouse anti-NES	1:300	Millipore Cat# Mab5326	RRID:AB_2251134
Secondary Antibody	Alexa Fluor™ anti-goat 647	1:500	Thermo Scientific Cat# A32728	RRID:AB_2633277
Secondary Antibody	Alexa Fluor [™] anti-rabbit	1:500	Thermo Scientific Cat# A32790	RRID:AB_2762833
	488			
Secondary Antibody	Alexa Fluor TM anti-mouse	1:500	Thermo Scientific Cat# A32773	RRID:AB_2762848
	546			
Secondary Antibody	IRDye® 800CW anti-mouse	1:10000	LI-COR Biosciences Cat# 926-32210	RRID:AB_2687825
	-			
D: 11 . 1				
Primers used in study	m	o: (1 1		
	Target	Size of band	Forward/Reverse primer (5'-3')	
gRNA cloning primer	-	-	5'CACCGTCTTCAGGCTGTCTGGGATC	: 3' //5'AAACCTAGGGTCTGTCGGACTTCTC 3'
SSO	-	-	5° GCTCCTGGGGGCCCCCTCAGAGCCACAGCTGTTCCTTCCT	
			3'	
Off-target sequencing	ATP1A4	500 bp	5'ACAGTACACAGACGGCATGG 3' //	5'TTGACGCAGCCTCAATCCAT 3'

5'CTTGCAAGGACAACTTCTAC 3' // 5'TGAATTACTTATGGGTTCCACT 3'

5'GCAGAGCAATGTTCACCACA 3' //5'GTGTGCTGAGGAGGAGGAGGTAGA 3'

5'GAGGAGCACACTGCCAAGAATC 3' //5'TGAACATGAGGTCTTCGCCTC 3'

5'CTCCTGGGAGTACACCACTG 3' //5'GTTCTGATGCTGTTCCCACCC 3'

5'CAGGACCTGCTCTTCCACA 3' //5'ATACCTTCCACAGCAGCTGG 3'

5'GAAGAACCTGATCGGAGCCCT 3' //5'TGGCAGACAGGATGGCCTT 3'

Off-target sequencing

Off-target sequencing

Off-target sequencing

Mutation sequencing

Site-specific nuclease Nuclease information

Selection/enrichment

Delivery method

strategy

Vector integration control

qRT-PCR

VEZT

RBM22

ANPEP

CTBP1

CTBP1

eSpCas9

Nucleofection

pCAG-eCas9-GFP-U6-gRNA

eGFP based FACS sorting

819 bp

491 bp

497 bp

508 bp

533 bp

512 bp

Table 4

Differentiation mediums used in study

Lineage Specific Medium	Components Concentration		Duration	
Ectoderm	Neurobasal	48.75%	12 days	
	DMEM/F12	48.75%		
	B27+VitA (50X)	1%		
	N2 (100X)	0.5%		
	NEAA (100X)	0.5%		
	β-ME (55mM)	55µM		
	LDN193189	100nM		
	SB431542	10µM		
	Penicillin-	0.5%		
	Streptomycin (100X)			
Mesoderm I	DMEM/F12	98.5%	Initial 2 days and	
	ITS-G	1%	then	
	CHIR99021	ЗμМ	Mesoderm II	
	Penicillin-	0.5%		
	Streptomycin (100X)			
Mesoderm II	DMEM/F12	98.5%	3 days	
	ITS-G	1%		
	CHIR99021	ЗμМ		
	Penicillin-	0.5%		
	Streptomycin (100X)			
	LDN193189	200nM		
	SB431542	10µM		
Endoderm I	RPMI-1640	98.5%	Initial 2 days and	
	Activin A	100nM	then	
	FGF2	20nM	Endoderm II	
	BMP4	20nM		
	B27-Insulin (50X)	1%		
	Penicillin-	0.5%		
	Streptomycin (100X)			
Endoderm II	RPMI-1640	98.5%	3 days	
	Activin A	100nM		
	B27-Insulin (50X)	1%		
	Penicillin-	0.5%		
	Streptomycin (100X)			

Fluorescence-activated cell sorting (FACS) was employed to isolate nucleofected cells in individual clones. The single-cell clones were passaged once to obtain one plate for clone screening, while a mirror plate was cryopreserved for later validation. PCR restriction fragment length polymorphism (PCR-RFLP) assay was applied to detect WT (wildtype) clones and clones with heterozygote or homozygote c991C>T mutation (Fig. 1D). For at least three clones per genotype the correct gene editing of the CTBP1 locus was confirmed by Sanger sequencing (Fig. 1E). Expression of CTBP1 mRNA was comparable in all clones confirming no deleterious effect of intronic nucleotide exchange (Fig. 1F, G). All clones had a typical pluripotent stem cell morphology 24h upon Rho-kinase inhibitor (Y-27632) depletion (Fig. 1H), expressed core pluripotency markers POU5F1, NANOG, and SOX2, and showed potential to differentiate into the three-germ layer derivatives, namely, endoderm, mesoderm, and ectoderm (Fig. 1I and Fig. S1C). No unintended variants were detected at the predicted off-target loci (Fig. S1A). A single nucleotide polymorphism (SNP) based genomic copy number variation (CNV) analysis validated the genetic integrity of at least two clones per line (Fig. S1B). All clones are regularly proven mycoplasma free. A summary of the independent cell lines and analysis methods are given in Table 1 and Table 2, respectively.

3. Materials and Methods

3.1. Cell culture

H9 hESC line was obtained from WiCell and handled according to the published protocol (Turan et al., 2019). Mycoplasma was regularly checked using Venor®GeM Classic (Minerva-Biolabs, Cat.# 11-1025). All analyses were performed at passage 5 after clonal selection.

3.2. Genome editing

For gene editing, a previously published protocol was utilized (Turan et al., 2019). Briefly, gRNAs were designed using (http://www.crispor. tefor.net) and cloned into pCAG-eCas9-GFP-U6-gRNA (Addgene, #79145) as previously described (Ran et al., 2013; Turan et al., 2019). $1.5 x 10^6$ cells were nucleofected with $5 \mu g$ gRNA plasmid, 100pmol ssODN in 2µM Alt-R[™] HDR Enhancer V2 (IDT, Cat.#1075916) using hESC nucleofector kit 2 (Lonza, Cat.#VPH-5022), protocol of manufacturer and program B-16. 48h later, GFP^{\pm} cells were isolated using FACS and seeded into 96-well plates for 10 days of clonal expansion. A replica was prepared for all clones as described previously to be used for cryopreservation and DNA extraction, respectively (Turan et al., 2019). To preselect desired clones, region within CTBP1 exon 9 was amplified using primers given in Table 3 as described before (Turan et al., 2019). Amplicons were digested using Msp1 restriction enzyme (NEB, Cat. #R0106S). For clones with correct digest pattern, undigested amplicons were sequenced. T7 endonuclease assay was done as described before (Turan et al., 2019).

3.3. Off-target analysis

CRISPOR was used to determine highly possible off-target regions (Turan et al., 2019). These regions were amplified using primers given in Table 3 and examined via Sanger sequencing.

3.4. Immunoblot, stainings, and qPCR

Immunohistochemistry, Western blot, and qPCR analysis were performed using antibodies and primers listed in Table 3 as previously described (Ivanova et al., 2020; Turan et al., 2019).

3.5. Chromosomal microarray and STR analysis

Affymetrix CytoScan HD Array kit (Thermo, Cat.#901835) was employed to assess *de novo* mosaic and non-mosaic copy number variants (CNVs). CNVs > 20 kb within exonic regions were considered for their pathogenicity. Short tandem repeat (STR) analysis was made using PowerPlex® 21 system (Promega, Cat.#DC8902).

3.6. Trilineage differentiation

Differentiation into mesoderm, endoderm, and ectoderm was induced in 12-well plate seeding 125×10^5 , 250×10^5 , and 800×10^5 cells respectively. Detailed differentiation mediums and durations are given in Table 4. All reagents and proteins were obtained from Thermo Fisher Scientific.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

Authors are supported by following funding: Interdisciplinary Center for Clinical Research Erlangen (IZKF): Travel pool 29139004 to EYA, J74-26512074 to SS; German Research Foundation (DFG): GRK2162/2 (270949263) to ST, DCL, BW, AF; Bavarian Research Association (Project ForInter): to ST, DCL and BW. We thank Juliana Monti and Holger Wend for great technical assistance. This article contains data generated by Enes Yağız Akdaş during his PhD at the FAU. Data will be included in his written PhD thesis. Illustrations were created with Bio-Render.com. We acknowledge financial support by Deutsche Forschungsgemeinschaft and Friedrich-Alexander-Universität Erlangen-

Stem Cell Research 67 (2023) 103012

Nürnberg within the funding programme "Open Access Publication Funding".

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scr.2022.103012.

References

Beck, D.B., Cho, M.T., Millan, F., Yates, C., Hannibal, M., O'Connor, B., Shinawi, M., Connolly, A.M., Waggoner, D., Halbach, S., Angle, B., Sanders, V., Shen, Y., Retterer, K., Begtrup, A., Bai, R., Chung, W.K., 2016. A recurrent de novo CTBP1 mutation is associated with developmental delay, hypotonia, ataxia, and tooth enamel defects. Neurogenetics 17 (3), 173–178.

- Ivanova, D., Imig, C., Camacho, M., Reinhold, A., Guhathakurta, D., Montenegro-Venegas, C., Cousin, M.A., Gundelfinger, E.D., Rosenmund, C., Cooper, B., Fejtova, A., 2020. CtBP1-mediated membrane fission contributes to effective recycling of synaptic vesicles. Cell Reports 30 (7), 2444–2459.e7.
- Ran, F., Hsu, P.D., Wright, J., Agarwala, V., Scott, D.A., Zhang, F., 2013. Genome engineering using the CRISPR-Cas9 system. Nature Protocols 8 (11), 2281–2308.
- Turan, S., Boerstler, T., Kavyanifar, A., Loskarn, S., Reis, A., Winner, B., Lie, D.C., 2019. A novel human stem cell model for Coffin-Siris syndrome-like syndrome reveals the importance of SOX11 dosage for neuronal differentiation and survival. Human Mol. Genetics 28 (15), 2589–2599.
- Wong, W. K., Balasubramaniam, S., Wong, R. S., Graf, N., Thorburn, D. R., McFarland, R., Troedson, C., 2022. Mitochondrial respiratory chain dysfunction in a patient with a heterozygous de novo CTBP1 variant. JIMD Reports.