2,272 research outputs found

    Worldline approach to vector and antisymmetric tensor fields

    Full text link
    The N=2 spinning particle action describes the propagation of antisymmetric tensor fields, including vector fields as a special case. In this paper we study the path integral quantization on a one-dimensional torus of the N=2 spinning particle coupled to spacetime gravity. The action has a local N=2 worldline supersymmetry with a gauged U(1) symmetry that includes a Chern-Simons coupling. Its quantization on the torus produces the one-loop effective action for a single antisymmetric tensor. We use this worldline representation to calculate the first few Seeley-DeWitt coefficients for antisymmetric tensor fields of arbitrary rank in arbitrary dimensions. As side results we obtain the correct trace anomaly of a spin 1 particle in four dimensions as well as exact duality relations between differential form gauge fields. This approach yields a drastic simplification over standard heat-kernel methods. It contains on top of the usual proper time a new modular parameter implementing the reduction to a single tensor field. Worldline methods are generically simpler and more efficient in perturbative computations then standard QFT Feynman rules. This is particularly evident when the coupling to gravity is considered.Comment: 30 pages, 5 figures, references adde

    A geometric approach to scalar field theories on the supersphere

    Full text link
    Following a strictly geometric approach we construct globally supersymmetric scalar field theories on the supersphere, defined as the quotient space S2∣2=UOSp(1∣2)/U(1)S^{2|2} = UOSp(1|2)/\mathcal{U}(1). We analyze the superspace geometry of the supersphere, in particular deriving the invariant vielbein and spin connection from a generalization of the left-invariant Maurer-Cartan form for Lie groups. Using this information we proceed to construct a superscalar field action on S2∣2S^{2|2}, which can be decomposed in terms of the component fields, yielding a supersymmetric action on the ordinary two-sphere. We are able to derive Lagrange equations and Noether's theorem for the superscalar field itself.Comment: 38 pages, 1 figur

    Higher order relations in Fedosov supermanifolds

    Full text link
    Higher order relations existing in normal coordinates between affine extensions of the curvature tensor and basic objects for any Fedosov supermanifolds are derived. Representation of these relations in general coordinates is discussed.Comment: 11 LaTex pages, no figure

    TeV Scale Lee-Wick Fields out of Large Extra Dimensional Gravity

    Full text link
    We study the gravitational corrections to the Maxwell, Dirac and Klein-Gorden theories in the large extra dimension model in which the gravitons propagate in the (4+n)-dimensional bulk, while the gauge and matter fields are confined to the four-dimensional world. The corrections to the two-point Green's functions of the gauge and matter fields from the exchanges of virtual Kaluza-Klein gravitons are calculated in the gauge independent background field method. In the framework of effective field theory, we show that the modified one-loop renormalizable Lagrangian due to quantum gravitational effects contains a TeV scale Lee-Wick partner of every gauge and matter field as extra degrees of freedom in the theory. Thus the large extra dimension model of gravity provides a natural mechanism to the emergence of these exotic particles which were recently used to construct an extension of the Standard Model.Comment: 17 pages, 3 figures, references added, to appear in Phys. Rev.

    Graded Majorana spinors

    Full text link
    In many mathematical and physical contexts spinors are treated as Grassmann odd valued fields. We show that it is possible to extend the classification of reality conditions on such spinors by a new type of Majorana condition. In order to define this graded Majorana condition we make use of pseudo-conjugation, a rather unfamiliar extension of complex conjugation to supernumbers. Like the symplectic Majorana condition, the graded Majorana condition may be imposed, for example, in spacetimes in which the standard Majorana condition is inconsistent. However, in contrast to the symplectic condition, which requires duplicating the number of spinor fields, the graded condition can be imposed on a single Dirac spinor. We illustrate how graded Majorana spinors can be applied to supersymmetry by constructing a globally supersymmetric field theory in three-dimensional Euclidean space, an example of a spacetime where standard Majorana spinors do not exist.Comment: 16 pages, version to appear in J. Phys. A; AFK previously published under the name A. F. Schunc

    A Clifford analysis approach to superspace

    Full text link
    A new framework for studying superspace is given, based on methods from Clifford analysis. This leads to the introduction of both orthogonal and symplectic Clifford algebra generators, allowing for an easy and canonical introduction of a super-Dirac operator, a super-Laplace operator and the like. This framework is then used to define a super-Hodge coderivative, which, together with the exterior derivative, factorizes the Laplace operator. Finally both the cohomology of the exterior derivative and the homology of the Hodge operator on the level of polynomial-valued super-differential forms are studied. This leads to some interesting graphical representations and provides a better insight in the definition of the Berezin-integral.Comment: 15 pages, accepted for publication in Annals of Physic

    Pressure measurements in a low-density nozzle plume for code verification

    Get PDF
    Measurements of Pitot pressure were made in the exit plane and plume of a low-density, nitrogen nozzle flow. Two numerical computer codes were used to analyze the flow, including one based on continuum theory using the explicit MacCormack method, and the other on kinetic theory using the method of direct-simulation Monte Carlo (DSMC). The continuum analysis was carried to the nozzle exit plane and the results were compared to the measurements. The DSMC analysis was extended into the plume of the nozzle flow and the results were compared with measurements at the exit plane and axial stations 12, 24 and 36 mm into the near-field plume. Two experimental apparatus were used that differed in design and gave slightly different profiles of pressure measurements. The DSMC method compared well with the measurements from each apparatus at all axial stations and provided a more accurate prediction of the flow than the continuum method, verifying the validity of DSMC for such calculations

    Measurement and analysis of a small nozzle plume in vacuum

    Get PDF
    Pitot pressures and flow angles are measured in the plume of a nozzle flowing nitrogen and exhausting to a vacuum. Total pressures are measured with Pitot tubes sized for specific regions of the plume and flow angles measured with a conical probe. The measurement area for total pressure extends 480 mm (16 exit diameters) downstream of the nozzle exit plane and radially to 60 mm (1.9 exit diameters) off the plume axis. The measurement area for flow angle extends to 160 mm (5 exit diameters) downstream and radially to 60 mm. The measurements are compared to results from a numerical simulation of the flow that is based on kinetic theory and uses the direct-simulation Monte Carlo (DSMC) method. Comparisons of computed results from the DSMC method with measurements of flow angle display good agreement in the far-field of the plume and improve with increasing distance from the exit plane. Pitot pressures computed from the DSMC method are in reasonably good agreement with experimental results over the entire measurement area

    Physical principles of local heat therapy for cancer

    Get PDF
    Local hyperthermia therapy for cancer can produce selective heating of solid tumors on the basis of known physical laws. If energy is deposited in the general region of the tumor, temperature tends to develop in the tumor higher than that in surrounding normal tissues. The goal of therapy is to achieve cytotoxic temperature elevations in the tumor for an adequate period of time, without damaging nearby normal tissues. Several modalities exist for local heat treatment, of which radiofrequency and ultrasound offer the most promise for controlled, localized heating at depth. A paucity of blood flow in the tumor compared to that in adjacent normal tissues can enhance selective tumor heating considerably. The tumor types that have reduced flow in their central regions are especially vulnerable to heat therapy, both because they can be heated more efficiently and because hypoxic and acidotic tumor tissues are more susceptible to damage by heat. This effect is more pronounced in larger tumors, which have smaller surface-to-volume ratios and so lose heat less rapidly by thermal diffusion. Selective heat treatment of larger tumor masses with low blood perfusion, therefore, is physically practical and rational therapy. Vigorous research efforts are now underway at many centers to optimize this approach

    A multiband radiometer and data acquisition system for remote sensing field research

    Get PDF
    Specifications are described for a recently developed prototype multispectral data acquisition system which consists of multiband radiometer with 8 bands between 0.4 and 12.5 micrometers and a data recording module to record data from the radometer and ancillary sources. The systems is adaptable to helicopter, truck, or tripod platforms, as well as hand-held operation. The general characteristics are: (1) comparatively inexpensive to acquire, maintain and operate; (2) simple to operate and calibrate; (3) complete with data hardware and software; and (4) well documented for use by researchers. The instrument system is to be commercially available and can be utilized by many researchers to obtain large numbers of accurate, calibrated spectral measurements. It can be a key element in improving and advancing the capability for field research in remote sensing
    • …
    corecore