1,263 research outputs found
Reverse engineering the euglenoid movement
Euglenids exhibit an unconventional motility strategy amongst unicellular eukaryotes, consisting of large-amplitude highly concerted deformations of the entire body (euglenoid movement or metaboly). A plastic cell envelope called pellicle mediates these deformations. Unlike ciliary or flagellar motility, the biophysics of this mode is not well understood, including its efficiency and molecular machinery. We quantitatively examine video recordings of four euglenids executing such motions with statistical learning methods. This analysis reveals strokes of high uniformity in shape and pace. We then interpret the observations in the light of a theory for the pellicle kinematics, providing a precise understanding of the link between local actuation by pellicle shear and shape control. We systematically understand common observations, such as the helical conformations of the pellicle, and identify previously unnoticed features of metaboly. While two of our euglenids execute their stroke at constant body volume, the other two exhibit deviations of about 20% from their average volume, challenging current models of low Reynolds number locomotion. We find that the active pellicle shear deformations causing shape changes can reach 340%, and estimate the velocity of the molecular motors. Moreover, we find that metaboly accomplishes locomotion at hydrodynamic efficiencies comparable to those of ciliates and flagellates. Our results suggest new quantitative experiments, provide insight into the evolutionary history of euglenids, and suggest that the pellicle may serve as a model for engineered active surfaces with applications in microfluidics
Dynamics of domain walls in magnetic nanostrips
We express dynamics of domain walls in ferromagnetic nanowires in terms of
collective coordinates generalizing Thiele's steady-state results. For weak
external perturbations the dynamics is dominated by a few soft modes. The
general approach is illustrated on the example of a vortex wall relevant to
recent experiments with flat nanowires. A two-mode approximation gives a
quantitatively accurate description of both the steady viscous motion of the
wall in weak magnetic fields and its oscillatory behavior in moderately high
fields above the Walker breakdown.Comment: 4 pages, update to published versio
Jamming Model for the Extremal Optimization Heuristic
Extremal Optimization, a recently introduced meta-heuristic for hard
optimization problems, is analyzed on a simple model of jamming. The model is
motivated first by the problem of finding lowest energy configurations for a
disordered spin system on a fixed-valence graph. The numerical results for the
spin system exhibit the same phenomena found in all earlier studies of extremal
optimization, and our analytical results for the model reproduce many of these
features.Comment: 9 pages, RevTex4, 7 ps-figures included, as to appear in J. Phys. A,
related papers available at http://www.physics.emory.edu/faculty/boettcher
S110, a novel decitabine dinucleotide, increases fetal hemoglobin levels in baboons (P. anubis)
<p>Abstract</p> <p>Background</p> <p>S110 is a novel dinucleoside analog that could have advantages over existing DNA methyltransferase (DNMT) inhibitors such as decitabine. A potential therapeutic role for S110 is to increase fetal hemoglobin (HbF) levels to treat β-hemoglobinopathies. In these experiments the effect of S110 on HbF levels in baboons and its ability to reduce DNA methylation of the γ-globin gene promoter in vivo were evaluated.</p> <p>Methods</p> <p>The effect of S110 on HbF and γ-globin promoter DNA methylation was examined in cultured human erythroid progenitors and in vivo in the baboon pre-clinical model. S110 pharmacokinetics was also examined in the baboon model.</p> <p>Results</p> <p>S110 increased HbF and reduced DNA methylation of the γ-globin promoter in human erythroid progenitors and in baboons when administered subcutaneously. Pharmacokinetic analysis was consistent with rapid conversion of S110 into the deoxycytosine analog decitabine that binds and depletes DNA.</p> <p>Conclusion</p> <p>S110 is rapidly converted into decitabine, hypomethylates DNA, and induces HbF in cultured human erythroid progenitors and the baboon pre-clinical model.</p
Local invertibility in Sobolev spaces with applications to nematic elastomers and magnetoelasticity
We define a class of deformations in W^1,p(\u3a9,R^n), p>n 121, with positive Jacobian that do not exhibit cavitation. We characterize that class in terms of the non-negativity of the topological degree and the equality between the distributional determinant and the pointwise determinant of the gradient. Maps in this class are shown to satisfy a property of weak monotonicity, and, as a consequence, they enjoy an extra degree of regularity. We also prove that these deformations are locally invertible; moreover, the neighbourhood of invertibility is stable along a weak convergent sequence in W^1,p, and the sequence of local inverses converges to the local inverse. We use those features to show weak lower semicontinuity of functionals defined in the deformed configuration and functionals involving composition of maps. We apply those results to prove existence of minimizers in some models for nematic elastomers and magnetoelasticity
Generating Better Medicines for Cancer
The complexity of tumor biology warrants tailored drug delivery for overcoming the major challenges faced by cancer therapies. The versatility of the PRINT® (Particle Replication In Non-wetting Templates) process has enabled the preparation of shape- and size-specific particles with a wide range of chemical compositions and therapeutic cargos. Different particle matrices and drugs may be combined in a plug-and-play approach, such that physico-chemical characteristics of delivery vectors may be optimized for biocompatibility, cargo stability and release, circulation half-life, and efficacy. Thus, the engineering of particles for cancer therapy with specific biophysical behaviors and cellular responses has been demonstrated via the PRINT process
Salience-based selection: attentional capture by distractors less salient than the target
Current accounts of attentional capture predict the most salient stimulus to be invariably selected first. However, existing salience and visual search models assume noise in the map computation or selection process. Consequently, they predict the first selection to be stochastically dependent on salience, implying that attention could even be captured first by the second most salient (instead of the most salient) stimulus in the field. Yet, capture by less salient distractors has not been reported and salience-based selection accounts claim that the distractor has to be more salient in order to capture attention. We tested this prediction using an empirical and modeling approach of the visual search distractor paradigm. For the empirical part, we manipulated salience of target and distractor parametrically and measured reaction time interference when a distractor was present compared to absent. Reaction time interference was strongly correlated with distractor salience relative to the target. Moreover, even distractors less salient than the target captured attention, as measured by reaction time interference and oculomotor capture. In the modeling part, we simulated first selection in the distractor paradigm using behavioral measures of salience and considering the time course of selection including noise. We were able to replicate the result pattern we obtained in the empirical part. We conclude that each salience value follows a specific selection time distribution and attentional capture occurs when the selection time distributions of target and distractor overlap. Hence, selection is stochastic in nature and attentional capture occurs with a certain probability depending on relative salience
Emotion based attentional priority for storage in visual short-term memory
A plethora of research demonstrates that the processing of emotional faces is prioritised over non-emotive stimuli when cognitive resources are limited (this is known as ‘emotional superiority’). However, there is debate as to whether competition for processing resources results in emotional superiority per se, or more specifically, threat superiority. Therefore, to investigate prioritisation of emotional stimuli for storage in visual short-term memory (VSTM), we devised an original VSTM report procedure using schematic (angry, happy, neutral) faces in which processing competition was manipulated. In Experiment 1, display exposure time was manipulated to create competition between stimuli. Participants (n = 20) had to recall a probed stimulus from a set size of four under high (150 ms array exposure duration) and low (400 ms array exposure duration) perceptual processing competition. For the high competition condition (i.e. 150 ms exposure), results revealed an emotional superiority effect per se. In Experiment 2 (n = 20), we increased competition by manipulating set size (three versus five stimuli), whilst maintaining a constrained array exposure duration of 150 ms. Here, for the five-stimulus set size (i.e. maximal competition) only threat superiority emerged. These findings demonstrate attentional prioritisation for storage in VSTM for emotional faces. We argue that task demands modulated the availability of processing resources and consequently the relative magnitude of the emotional/threat superiority effect, with only threatening stimuli prioritised for storage in VSTM under more demanding processing conditions. Our results are discussed in light of models and theories of visual selection, and not only combine the two strands of research (i.e. visual selection and emotion), but highlight a critical factor in the processing of emotional stimuli is availability of processing resources, which is further constrained by task demands
Dendritic Core-Shell Macromolecules Soluble in Supercritical Carbon Dioxide
International audienceSupercritical carbon dioxide has found strong interest as a reaction medium recently.1,2 As an alternative to organic solvents, compressed carbon dioxide is toxicologically harmless, nonflammable, inexpensive, and environmentally benign.3 Its accessible critical temperature and pressure (Tc ) 31 °C, Pc ) 7.38 MPa, Fc ) 0.468 g cm-3)4 and the possibility of tuning the solvent-specific properties between the ones of liquid and gas are very attractive
- …