21 research outputs found

    Assessment of brain age in posttraumatic stress disorder: Findings from the ENIGMA PTSD and brain age working groups

    Get PDF
    BACKGROUND: Posttraumatic stress disorder (PTSD) is associated with markers of accelerated aging. Estimates of brain age, compared to chronological age, may clarify the effects of PTSD on the brain and may inform treatment approaches targeting the neurobiology of aging in the context of PTSD. METHOD: Adult subjects (N = 2229; 56.2% male) aged 18-69 years (mean = 35.6, SD = 11.0) from 21 ENIGMA-PGC PTSD sites underwent T1-weighted brain structural magnetic resonance imaging, and PTSD assessment (PTSD+, n = 884). Previously trained voxel-wise (brainageR) and region-of-interest (BARACUS and PHOTON) machine learning pipelines were compared in a subset of control subjects (n = 386). Linear mixed effects models were conducted in the full sample (those with and without PTSD) to examine the effect of PTSD on brain predicted age difference (brain PAD; brain age - chronological age) controlling for chronological age, sex, and scan site. RESULTS: BrainageR most accurately predicted brain age in a subset (n = 386) of controls (brainageR: ICC = 0.71, R = 0.72, MAE = 5.68; PHOTON: ICC = 0.61, R = 0.62, MAE = 6.37; BARACUS: ICC = 0.47, R = 0.64, MAE = 8.80). Using brainageR, a three-way interaction revealed that young males with PTSD exhibited higher brain PAD relative to male controls in young and old age groups; old males with PTSD exhibited lower brain PAD compared to male controls of all ages. DISCUSSION: Differential impact of PTSD on brain PAD in younger versus older males may indicate a critical window when PTSD impacts brain aging, followed by age-related brain changes that are consonant with individuals without PTSD. Future longitudinal research is warranted to understand how PTSD impacts brain aging across the lifespan

    Trauma-related emotions and radical acceptance in dialectical behavior therapy for posttraumatic stress disorder after childhood sexual abuse

    Get PDF
    Background: Posttraumatic Stress Disorder (PTSD) related to childhood sexual abuse (CSA) is often associated with a wide range of trauma-related aversive emotions such as fear, disgust, sadness, shame, guilt, and anger. Intense experience of aversive emotions in particular has been linked to higher psychopathology in trauma survivors. Most established psychosocial treatments aim to reduce avoidance of trauma-related memories and associated emotions. Interventions based on Dialectical Behavior Therapy (DBT) also foster radical acceptance of the traumatic event. Methods: This study compares individual ratings of trauma-related emotions and radical acceptance between the start and the end of DBT for PTSD (DBT-PTSD) related to CSA. We expected a decrease in trauma-related emotions and an increase in acceptance. In addition, we tested whether therapy response according to the Clinician Administered PTSD-Scale (CAPS) for the DSM-IV was associated with changes in trauma-related emotions and acceptance. The data was collected within a randomized controlled trial testing the efficacy of DBT-PTSD, and a subsample of 23 women was included in this secondary data analysis. Results: In a multilevel model, shame, guilt, disgust, distress, and fear decreased significantly from the start to the end of the therapy whereas radical acceptance increased. Therapy response measured with the CAPS was associated with change in trauma-related emotions. Conclusions: Trauma-related emotions and radical acceptance showed significant changes from the start to the end of DBT-PTSD. Future studies with larger sample sizes and control group designs are needed to test whether these changes are due to the treatment. Trial registration: ClinicalTrials.gov, number NCT0048100

    Assessment of Brain Age in Posttraumatic Stress Disorder: Findings from the ENIGMA PTSD and Brain Age Working Groups

    Get PDF
    Background Posttraumatic stress disorder (PTSD) is associated with markers of accelerated aging. Estimates of brain age, compared to chronological age, may clarify the effects of PTSD on the brain and may inform treatment approaches targeting the neurobiology of aging in the context of PTSD. Method Adult subjects (N = 2229; 56.2% male) aged 18–69 years (mean = 35.6, SD = 11.0) from 21 ENIGMA-PGC PTSD sites underwent T1-weighted brain structural magnetic resonance imaging, and PTSD assessment (PTSD+, n = 884). Previously trained voxel-wise (brainageR) and region-of-interest (BARACUS and PHOTON) machine learning pipelines were compared in a subset of control subjects (n = 386). Linear mixed effects models were conducted in the full sample (those with and without PTSD) to examine the effect of PTSD on brain predicted age difference (brain PAD; brain age − chronological age) controlling for chronological age, sex, and scan site. Results BrainageR most accurately predicted brain age in a subset (n = 386) of controls (brainageR: ICC = 0.71, R = 0.72, MAE = 5.68; PHOTON: ICC = 0.61, R = 0.62, MAE = 6.37; BARACUS: ICC = 0.47, R = 0.64, MAE = 8.80). Using brainageR, a three-way interaction revealed that young males with PTSD exhibited higher brain PAD relative to male controls in young and old age groups; old males with PTSD exhibited lower brain PAD compared to male controls of all ages. Discussion Differential impact of PTSD on brain PAD in younger versus older males may indicate a critical window when PTSD impacts brain aging, followed by age-related brain changes that are consonant with individuals without PTSD. Future longitudinal research is warranted to understand how PTSD impacts brain aging across the lifespan

    Psychological resilience in sport performers: a review of stressors and protective factors

    Get PDF
    Psychological resilience is important in sport because athletes must utilize and optimize a range of mental qualities to withstand the pressures that they experience. In this paper, we discuss psychological resilience in sport performers via a review of the stressors athletes encounter and the protective factors that help them withstand these demands. It is hoped that synthesizing what is known in these areas will help researchers gain a deeper profundity of resilience in sport, and also provide a rigorous and robust foundation for the development of a sport-specific measure of resilience. With these points in mind, we divided the narrative into two main sections. In the first section, we review the different types of stressors encountered by sport performers under three main categories: competitive, organizational, and personal. Based on our recent research examining psychological resilience in Olympics champions (Fletcher & Sarkar, 2012), in the second section we discuss the five main families of psychological factors (viz. positive personality, motivation, confidence, focus, perceived social support) that protect the best athletes from the potential negative effect of stressors. It is anticipated that this review will help sport psychology researchers examine the interplay between stressors and protective factors which will, in turn, focus the analytical lens on the processes underlying psychological resilience in athletes

    Remodeling of the Cortical Structural Connectome in Posttraumatic Stress Disorder:Results from the ENIGMA-PGC PTSD Consortium

    Get PDF
    BACKGROUND: Posttraumatic stress disorder (PTSD) is accompanied by disrupted cortical neuroanatomy. We investigated alteration in covariance of structural networks associated with PTSD in regions that demonstrate the case-control differences in cortical thickness (CT) and surface area (SA). METHODS: Neuroimaging and clinical data were aggregated from 29 research sites in >1,300 PTSD cases and >2,000 trauma-exposed controls (age 6.2-85.2 years) by the ENIGMA-PGC PTSD working group. Cortical regions in the network were rank-ordered by effect size of PTSD-related cortical differences in CT and SA. The top-n (n = 2 to 148) regions with the largest effect size for PTSD > non-PTSD formed hypertrophic networks, the largest effect size for PTSD < non-PTSD formed atrophic networks, and the smallest effect size of between-group differences formed stable networks. The mean structural covariance (SC) of a given n-region network was the average of all positive pairwise correlations and was compared to the mean SC of 5,000 randomly generated n-region networks. RESULTS: Patients with PTSD, relative to non-PTSD controls, exhibited lower mean SC in CT-based and SA-based atrophic networks. Comorbid depression, sex and age modulated covariance differences of PTSD-related structural networks. CONCLUSIONS: Covariance of structural networks based on CT and cortical SA are affected by PTSD and further modulated by comorbid depression, sex, and age. The structural covariance networks that are perturbed in PTSD comport with converging evidence from resting state functional connectivity networks and networks impacted by inflammatory processes, and stress hormones in PTSD

    A Comparison of Methods to Harmonize Cortical Thickness Measurements Across Scanners and Sites

    Get PDF
    Results of neuroimaging datasets aggregated from multiple sites may be biased by site-specific profiles in participants’ demographic and clinical characteristics, as well as MRI acquisition protocols and scanning platforms. We compared the impact of four different harmonization methods on results obtained from analyses of cortical thickness data: (1) linear mixed-effects model (LME) that models site-specific random intercepts (LME INT), (2) LME that models both site-specific random intercepts and age-related random slopes (LME INT+SLP), (3) ComBat, and (4) ComBat with a generalized additive model (ComBat-GAM). Our test case for comparing harmonization methods was cortical thickness data aggregated from 29 sites, which included 1,340 cases with posttraumatic stress disorder (PTSD) (6.2–81.8 years old) and 2,057 trauma-exposed controls without PTSD (6.3–85.2 years old). We found that, compared to the other data harmonization methods, data processed with ComBat-GAM was more sensitive to the detection of significant case-control differences (Χ 2(3) = 63.704, p < 0.001) as well as case-control differences in age-related cortical thinning (Χ 2(3) = 12.082, p = 0.007). Both ComBat and ComBat-GAM outperformed LME methods in detecting sex differences (Χ 2(3) = 9.114, p = 0.028) in regional cortical thickness. ComBat-GAM also led to stronger estimates of age-related declines in cortical thickness (corrected p-values < 0.001), stronger estimates of case-related cortical thickness reduction (corrected p-values < 0.001), weaker estimates of age-related declines in cortical thickness in cases than controls (corrected p-values < 0.001), stronger estimates of cortical thickness reduction in females than males (corrected p-values < 0.001), and stronger estimates of cortical thickness reduction in females relative to males in cases than controls (corrected p-values < 0.001). Our results support the use of ComBat-GAM to minimize confounds and increase statistical power when harmonizing data with non-linear effects, and the use of either ComBat or ComBat-GAM for harmonizing data with linear effects

    A comparison of methods to harmonize cortical thickness measurements across scanners and sites

    Get PDF
    Results of neuroimaging datasets aggregated from multiple sites may be biased by site-specific profiles in participants' demographic and clinical characteristics, as well as MRI acquisition protocols and scanning platforms. We compared the impact of four different harmonization methods on results obtained from analyses of cortical thickness data: (1) linear mixed-effects model (LME) that models site-specific random intercepts (LME INT), (2) LME that models both site-specific random intercepts and age-related random slopes (LME INT+ SLP), (3) ComBat, and (4) ComBat with a generalized additive model (ComBat-GAM). Our test case for comparing harmonization methods was cortical thickness data aggregated from 29 sites, which included 1,340 cases with posttraumatic stress disorder (PTSD) (6.2-81.8 years old) and 2,057 trauma-exposed controls without PTSD (6.3-85.2 years old). We found that, compared to the other data harmonization methods, data processed with ComBat-GAM was more sensitive to the detection of significant case-control differences (X-2 (3) = 63.704, p < 0.001) as well as casecontrol differences in age-related cortical thinning (X-2 (3) = 12.082, p = 0.007). Both ComBat and ComBat-GAM outperformed LME methods in detecting sex differences (X-2 (3) = 9.114, p = 0.028) in regional cortical thickness. ComBat-GAM also led to stronger estimates of age-related declines in cortical thickness (corrected p-values < 0.001), stronger estimates of case-related cortical thickness reduction (corrected p-values < 0.001), weaker estimates of age-related declines in cortical thickness in cases than controls (corrected p-values < 0.001), stronger estimates of cortical thickness reduction in females than males (corrected p-values < 0.001), and stronger estimates of cortical thickness reduction in females relative to males in cases than controls (corrected p-values < 0.001). Our results support the use of ComBat-GAM to minimize confounds and increase statistical power when harmonizing data with non-linear effects, and the use of either ComBat or ComBat-GAM for harmonizing data with linear effects.Stress-related psychiatric disorders across the life spa

    Neuroimaging-based classification of PTSD using data-driven computational approaches: a multisite big data study from the ENIGMA-PGC PTSD consortium

    Get PDF
    Background: Recent advances in data-driven computational approaches have been helpful in devising tools to objectively diagnose psychiatric disorders. However, current machine learning studies limited to small homogeneous samples, different methodologies, and different imaging collection protocols, limit the ability to directly compare and generalize their results. Here we aimed to classify individuals with PTSD versus controls and assess the generalizability using a large heterogeneous brain datasets from the ENIGMA-PGC PTSD Working group. Methods: We analyzed brain MRI data from 3,477 structural-MRI; 2,495 resting state-fMRI; and 1,952 diffusion-MRI. First, we identified the brain features that best distinguish individuals with PTSD from controls using traditional machine learning methods. Second, we assessed the utility of the denoising variational autoencoder (DVAE) and evaluated its classification performance. Third, we assessed the generalizability and reproducibility of both models using leave-one-site-out cross-validation procedure for each modality. Results: We found lower performance in classifying PTSD vs. controls with data from over 20 sites (60 % test AUC for s-MRI, 59 % for rs-fMRI and 56 % for D-MRI), as compared to other studies run on single-site data. The performance increased when classifying PTSD from HC without trauma history in each modality (75 % AUC). The classification performance remained intact when applying the DVAE framework, which reduced the number of features. Finally, we found that the DVAE framework achieved better generalization to unseen datasets compared with the traditional machine learning frameworks, albeit performance was slightly above chance. Conclusion: These results have the potential to provide a baseline classification performance for PTSD when using large scale neuroimaging datasets. Our findings show that the control group used can heavily affect classification performance. The DVAE framework provided better generalizability for the multi-site data. This may be more significant in clinical practice since the neuroimaging-based diagnostic DVAE classification models are much less site-specific, rendering them more generalizable.Stress-related psychiatric disorders across the life spa

    Psychological resilience in sport performers: a review of stressors and protective factors

    Full text link

    Racial Discrimination is Associated with Acute Posttraumatic Stress Symptoms and Predicts Future Posttraumatic Stress Disorder Symptom Severity in Trauma-Exposed Black Adults in the United States

    No full text
    In the United States, Black residents exposed to a traumatic event are at an increased risk of developing posttraumatic stress disorder (PTSD) and experiencing more severe symptoms compared to their non‐Hispanic White counterparts. Although previous work has suggested a link between racial discrimination and PTSD symptoms, no studies have assessed this association in a sample of traumatic injury survivors. The current study investigated whether (a) past racial discrimination was associated with acute posttraumatic stress symptoms (PTSS) and (b) discrimination prospectively contributed to the prediction of future PTSD symptoms. African American and/or Black patients (N = 113) were recruited from an emergency department in southeastern Wisconsin. Patients in the acute postinjury phase (i.e., 2 weeks posttrauma) completed self‐report measures, with PTSD symptoms assessed using the Clinician‐Administered PTSD Scale at 6‐month follow‐up. Bivariate associations indicated past racial discrimination was significantly related to acute PTSS. A multiple regression analysis revealed that pretrauma exposure to racial discrimination significantly predicted PTSD symptoms at follow‐up, even after controlling for age, gender, previous psychiatric diagnosis, social support, and lifetime trauma history. Our results suggest that experiences of racial discrimination add significant additional risk for PTSD symptom development following traumatic injury, R2 =.16, F(6, 106) = 3.25, p =.006. Broadly, these findings add to the body of empirical evidence and personal testimonies of Black individuals in White‐centric societies asserting that racial discrimination affects mental health and overall well‐being and further highlight the recent call for racism to be classified as a public health crisis
    corecore