772 research outputs found
Transcriptome Sequencing Demonstrates that Human Papillomavirus Is Not Active in Cutaneous Squamous Cell Carcinoma
β-Human papillomavirus (β-HPV) DNA is present in some cutaneous squamous cell carcinomas (cuSCCs), but no mechanism of carcinogenesis has been determined. We used ultra-high-throughput sequencing of the cancer transcriptome to assess whether papillomavirus transcripts are present in these cancers. In all, 67 cuSCC samples were assayed for β-HPV DNA by PCR, and viral loads were measured with type-specific quantitative PCR. A total of 31 SCCs were selected for whole transcriptome sequencing. Transcriptome libraries were prepared in parallel from the HPV18-positive HeLa cervical cancer cell line and HPV16-positive primary cervical and periungual SCCs. Of the tumors, 30% (20/67) were positive for β-HPV DNA, but there was no difference in β-HPV viral load between tumor and normal tissue (P=0.310). Immunosuppression and age were significantly associated with higher viral load (P=0.016 for immunosuppression; P=0.0004 for age). Transcriptome sequencing failed to identify papillomavirus expression in any of the skin tumors. In contrast, HPV16 and HPV18 mRNA transcripts were readily identified in primary cervical and periungual cancers and HeLa cells. These data demonstrate that papillomavirus mRNA expression is not a factor in the maintenance of cuSCCs
Au-Ag template stripped pattern for scanning probe investigations of DNA arrays produced by Dip Pen Nanolithography
We report on DNA arrays produced by Dip Pen Nanolithography (DPN) on a novel
Au-Ag micro patterned template stripped surface. DNA arrays have been
investigated by atomic force microscopy (AFM) and scanning tunnelling
microscopy (STM) showing that the patterned template stripped substrate enables
easy retrieval of the DPN-functionalized zone with a standard optical
microscope permitting a multi-instrument and multi-technique local detection
and analysis. Moreover the smooth surface of the Au squares (abput 5-10
angstrom roughness) allows to be sensitive to the hybridization of the
oligonucleotide array with label-free target DNA. Our Au-Ag substrates,
combining the retrieving capabilities of the patterned surface with the
smoothness of the template stripped technique, are candidates for the
investigation of DPN nanostructures and for the development of label free
detection methods for DNA nanoarrays based on the use of scanning probes.Comment: Langmuir (accepted
Interdisciplinary Graduate Training in Teaching Labs
Modern research and training in the life sciences require cross-disciplinary programs, integrating concepts and methods from biology, physics, chemistry, and mathematics. We describe the structure and outcomes from an example of one such approach, the Physiology Course at the Marine Biological Laboratory (MBL) in Woods Hole, Massachusetts, and discuss how similar intensive, team-building research courses are also being applied to improve graduate education in universities. These courses are based on teaching laboratories that have students address contemporary research questions by combining ideas and approaches from biology, computation, and physics
Application of regulatory sequence analysis and metabolic network analysis to the interpretation of gene expression data
We present two complementary approaches for the interpretation of clusters of
co-regulated genes, such as those obtained from DNA chips and related methods.
Starting from a cluster of genes with similar expression profiles, two basic
questions can be asked:
1. Which mechanism is responsible for the coordinated transcriptional response
of the genes? This question is approached by extracting motifs that are shared
between the upstream sequences of these genes. The motifs extracted are putative
cis-acting regulatory elements.
2. What is the physiological meaning for the cell to express together these
genes? One way to answer the question is to search for potential metabolic
pathways that could be catalyzed by the products of the genes. This can be
done by selecting the genes from the cluster that code for enzymes, and trying
to assemble the catalyzed reactions to form metabolic pathways.
We present tools to answer these two questions, and we illustrate their use with
selected examples in the yeast Saccharomyces cerevisiae. The tools are available
on the web (http://ucmb.ulb.ac.be/bioinformatics/rsa-tools/;
http://www.ebi.ac.uk/research/pfbp/; http://www.soi.city.ac.uk/~msch/)
Testing significance relative to a fold-change threshold is a TREAT
Motivation: Statistical methods are used to test for the differential expression of genes in microarray experiments. The most widely used methods successfully test whether the true differential expression is different from zero, but give no assurance that the differences found are large enough to be biologically meaningful
Metagenomic next-generation sequencing of samples from pediatric febrile illness in Tororo, Uganda.
Febrile illness is a major burden in African children, and non-malarial causes of fever are uncertain. In this retrospective exploratory study, we used metagenomic next-generation sequencing (mNGS) to evaluate serum, nasopharyngeal, and stool specimens from 94 children (aged 2-54 months) with febrile illness admitted to Tororo District Hospital, Uganda. The most common microbes identified were Plasmodium falciparum (51.1% of samples) and parvovirus B19 (4.4%) from serum; human rhinoviruses A and C (40%), respiratory syncytial virus (10%), and human herpesvirus 5 (10%) from nasopharyngeal swabs; and rotavirus A (50% of those with diarrhea) from stool. We also report the near complete genome of a highly divergent orthobunyavirus, tentatively named Nyangole virus, identified from the serum of a child diagnosed with malaria and pneumonia, a Bwamba orthobunyavirus in the nasopharynx of a child with rash and sepsis, and the genomes of two novel human rhinovirus C species. In this retrospective exploratory study, mNGS identified multiple potential pathogens, including 3 new viral species, associated with fever in Ugandan children
The NBD-NBD interface is not the sole determinant for transport in ABC transporters
International audienceOne of the most exciting scientific challenges in functional genomics concerns the discovery of biologically relevant patterns from gene expression data. For instance, it is extremely useful to provide putative synexpression groups or transcription modules to molecular biologists. We propose a methodology that has been proved useful in real cases. It is described as a prototypical KDD scenario which starts from raw expression data selection until useful patterns are delivered. Our conceptual contribution is (a) to emphasize how to take the most from recent progress in constraint-based mining of set patterns, and (b) to propose a generic approach for gene expression data enrichment. The methodology has been validated on real data sets
Comparative Analysis of Tandem Repeats from Hundreds of Species Reveals Unique Insights into Centromere Evolution
Centromeres are essential for chromosome segregation, yet their DNA sequences
evolve rapidly. In most animals and plants that have been studied, centromeres
contain megabase-scale arrays of tandem repeats. Despite their importance, very
little is known about the degree to which centromere tandem repeats share
common properties between different species across different phyla. We used
bioinformatic methods to identify high-copy tandem repeats from 282 species
using publicly available genomic sequence and our own data. The assumption that
the most abundant tandem repeat is the centromere DNA was true for most species
whose centromeres have been previously characterized, suggesting this is a
general property of genomes. Our methods are compatible with all current
sequencing technologies. Long Pacific Biosciences sequence reads allowed us to
find tandem repeat monomers up to 1,419 bp. High-copy centromere tandem repeats
were found in almost all animal and plant genomes, but repeat monomers were
highly variable in sequence composition and in length. Furthermore,
phylogenetic analysis of sequence homology showed little evidence of sequence
conservation beyond ~50 million years of divergence. We find that despite an
overall lack of sequence conservation, centromere tandem repeats from diverse
species showed similar modes of evolution, including the appearance of higher
order repeat structures in which several polymorphic monomers make up a larger
repeating unit. While centromere position in most eukaryotes is epigenetically
determined, our results indicate that tandem repeats are highly prevalent at
centromeres of both animals and plants. This suggests a functional role for
such repeats, perhaps in promoting concerted evolution of centromere DNA across
chromosomes
- …