3,587 research outputs found

    Diagnosing faults in autonomous robot plan execution

    Get PDF
    A major requirement for an autonomous robot is the capability to diagnose faults during plan execution in an uncertain environment. Many diagnostic researches concentrate only on hardware failures within an autonomous robot. Taking a different approach, the implementation of a Telerobot Diagnostic System that addresses, in addition to the hardware failures, failures caused by unexpected event changes in the environment or failures due to plan errors, is described. One feature of the system is the utilization of task-plan knowledge and context information to deduce fault symptoms. This forward deduction provides valuable information on past activities and the current expectations of a robotic event, both of which can guide the plan-execution inference process. The inference process adopts a model-based technique to recreate the plan-execution process and to confirm fault-source hypotheses. This technique allows the system to diagnose multiple faults due to either unexpected plan failures or hardware errors. This research initiates a major effort to investigate relationships between hardware faults and plan errors, relationships which were not addressed in the past. The results of this research will provide a clear understanding of how to generate a better task planner for an autonomous robot and how to recover the robot from faults in a critical environment

    Relational Reasoning Network (RRN) for Anatomical Landmarking

    Full text link
    Accurately identifying anatomical landmarks is a crucial step in deformation analysis and surgical planning for craniomaxillofacial (CMF) bones. Available methods require segmentation of the object of interest for precise landmarking. Unlike those, our purpose in this study is to perform anatomical landmarking using the inherent relation of CMF bones without explicitly segmenting them. We propose a new deep network architecture, called relational reasoning network (RRN), to accurately learn the local and the global relations of the landmarks. Specifically, we are interested in learning landmarks in CMF region: mandible, maxilla, and nasal bones. The proposed RRN works in an end-to-end manner, utilizing learned relations of the landmarks based on dense-block units and without the need for segmentation. For a given a few landmarks as input, the proposed system accurately and efficiently localizes the remaining landmarks on the aforementioned bones. For a comprehensive evaluation of RRN, we used cone-beam computed tomography (CBCT) scans of 250 patients. The proposed system identifies the landmark locations very accurately even when there are severe pathologies or deformations in the bones. The proposed RRN has also revealed unique relationships among the landmarks that help us infer several reasoning about informativeness of the landmark points. RRN is invariant to order of landmarks and it allowed us to discover the optimal configurations (number and location) for landmarks to be localized within the object of interest (mandible) or nearby objects (maxilla and nasal). To the best of our knowledge, this is the first of its kind algorithm finding anatomical relations of the objects using deep learning.Comment: 10 pages, 6 Figures, 3 Table

    QT peak prolongation predicts cardiac death following stroke

    Get PDF
    Cardiac death has been linked in many populations to prolongation of the QT interval (QTe). However, basic science research suggested that the best estimate of the time point when repolarisation begins is near the T-wave peak. We found QT peak (QTp) was longer in hypertensive subjects with LVH. A prolonged “depolarisation” phase, rather than “repolarisation” (T peak to T end) might therefore account for the higher incidence of cardiac death linked to long QT. Hypothesis: We have tested the hypothesis that QT peak (QTp) prolongation predicts cardiac death in stroke survivors. Methods and Results: ECGs were recorded from 296 stroke survivors (152 male), mean age 67.2 (SD 11.6) approximately 1 year after the event. Their mean blood pressure was 152/88 mmHg (SD 29/15mmHg). These ECGs were digitised by one observer who was blinded to patient outcome. The patients were followed up for a median of 3.3 years. The primary endpoint was cardiac death. A prolonged heart rate corrected QT peak (QTpc) of lead I carried the highest relative risk of death from all cause as well as cardiac death, when compared with the other more conventional QT indices. In multivariate analyses, when adjusted for conventional risk factors of atherosclerosis, a prolonged QTpc of lead I was still associated with a 3-fold increased risk of cardiac death. (adjusted relative risk 3.0 [95% CI 1.1 - 8.5], p=0.037). Conclusion: QT peak prolongation in lead I predicts cardiac death after strok

    Craniofacial Analysis May Indicate Co-Occurrence of Skeletal Malocclusions and Associated Risks in Development of Cleft Lip and Palate

    Get PDF
    Non-syndromic orofacial clefts encompass a range of morphological changes affecting the oral cavity and the craniofacial skeleton, of which the genetic and epigenetic etiologic factors remain largely unknown. The objective of this study is to explore the contribution of underlying dentofacial deformities (also known as skeletal malocclusions) in the craniofacial morphology of non-syndromic cleft lip and palate patients (nsCLP). For that purpose, geometric morphometric analysis was performed using full skull cone beam computed tomography (CBCT) images of patients with nsCLP (n = 30), normocephalic controls (n = 60), as well as to sex- and ethnicity- matched patients with an equivalent dentofacial deformity (n = 30). Our outcome measures were shape differences among the groups quantified via principal component analysis and associated principal component loadings, as well as mean shape differences quantified via a Procrustes distance among groups. According to our results, despite the shape differences among all three groups, the nsCLP group shares many morphological similarities in the maxilla and mandible with the dentofacial deformity group. Therefore, the dentoskeletal phenotype in nsCLP could be the result of the cleft and the coexisting dentofacial deformity and not simply the impact of the cleft

    Parents' perceived obstacles to pediatric clinical trial participation: Findings from the clinical trials transformation initiative.

    Get PDF
    Enrollment of children into pediatric clinical trials remains challenging. More effective strategies to improve recruitment of children into trials are needed. This study used in-depth qualitative interviews with parents who were approached to enroll their children in a clinical trial in order to gain an understanding of the barriers to pediatric clinical trial participation. Twenty-four parents whose children had been offered the opportunity to participate in a clinical trial were interviewed: 19 whose children had participated in at least 1 clinical trial and 5 who had declined participation in any trial. Each study aspect, from the initial explanation of the study to the end of the study, can affect the willingness of parents to consent to the proposed study and future studies. Establishing trust, appropriate timing, a transparent discussion of risks and benefits oriented to the layperson, and providing motivation for children to participate were key factors that impacted parents' decisions. In order for clinical trial accrual to be successful, parents' priorities and considerations must be a central focus, beginning with initial trial design. The recommendations from the parents who participated in this study can be used to support budget allocations that ensure adequate training of study staff and improved staffing on nights and weekends. Studies of parent responses in outpatient settings and additional inpatient settings will provide valuable information on the consent process from the child's and parent's perspectives. Further studies are needed to explore whether implementation of such strategies will result in improved recruitment for pediatric clinical trials

    Iterative Design of a Simulation-Based Module for Teaching Evolution by Natural Selection

    Get PDF
    Background: This research builds on a previous study that looked at the effectiveness of a simulation-based module for teaching students about the process of evolution by natural selection. While the previous study showed that the module was successful in teaching how natural selection works, the research uncovered some weaknesses in the design. In this paper, we used design-based research to investigate how design changes to the module affected not only students’ understanding of the concepts but also their usage of misconceptions in the assessments. We present results from two studies. In study 1, we looked at gains in understanding on a pre and post-assessment for students who used the revised version of the module. We also examined misconception uses in their answer selections. In study 2, we compared the performance on a summative assessment between students who used the revised version and students who used the original version of the module. We also looked at misconception uses in their answer selections. Results: In study 1, we saw a significant improvement in the pre-post assessment for students who used the revised version. In study 2, we did not find a significant difference on the overall performance outcome between students who used the revised and those that used the original version of the module. In both studies, however, we saw a lower use of misconceptions after students used the revised module. In particular, we saw less use of the adaptive mutation misconception, the belief that mutations are adaptive responses to the environment and are biased towards advantageous mutations. This is promising because in the previous study there was no evidence of decreased use of this misconception. Conclusions: Students showed learning gains on all targeted key concepts, and reduced expression of all targeted misconceptions, which was not found previously for students using the older workbook version of the module. In particular, the revised version appears to help students overcome the adaptive mutation misconception. This article demonstrates how design-based research can contribute to the ongoing improvement of evidence-based instruction in undergraduate biology classrooms

    The prevention of lower urinary tract symptoms (PLUS) research consortium: A transdisciplinary approach toward promoting bladder health and preventing lower urinary tract symptoms in women across the life course

    Get PDF
    Lower urinary tract symptoms (LUTS) are highly prevalent in women, and are expected to impose a growing burden to individuals and society as the population ages. The predominance of research related to LUTS has focused on underlying pathology, disease mechanisms, or the efficacy of treatments for women with LUTS. Although this research has been vital for helping to reduce or ameliorate LUTS conditions, it has done little to prevent the onset of LUTS. Health promotion and prevention require an expansion of scientific inquiry beyond the traditional paradigm of studying disease mechanisms and treatment to the creation of an evidence base to support recommendations for bladder health promotion and, in turn, prevention of LUTS. The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) introduced the concept of prevention as an important priority for women's urologic research as a prelude to supporting the formation of the Prevention of Lower Urinary Tract Symptoms (PLUS) research consortium. In this article, we introduce the PLUS research consortium to the scientific community; share the innovative paradigms by which the consortium operates; and describe its unique research mission: to identify factors that promote bladder health across the life course and prevent the onset of LUTS in girls and women

    The physical parameters, excitation and chemistry of the rim, jets and knots of the planetary nebula NGC 7009

    Get PDF
    We present long-slit optical spectra along the major axis of the planetary nebula NGC 7009. These data allow us to discuss the physical, excitation and chemical properties of all the morphological components of the nebula, including its remarkable systems of knots and jets. The main results of this analysis are the following: i) the electron temperature throughout the nebula is remarkably constant, T_e[OIII] = 10200K; ii) the bright inner rim and inner pair of knots have similar densities of N_e = 6000cm^{-3}, whereas a much lower density of N_e = 1500cm^{-3} is derived for the outer knots as well as for the jets; iii) all the regions (rim, inner knots, jets and outer knots) are mainly radiatively excited; and iv) there are no clear abundance changes across the nebula for He, O, Ne, or S. There is a marginal evidence for an overabundance of nitrogen in the outer knots (ansae), but the inner ones (caps) and the rim have similar N/H values that are at variance with previous results. Our data are compared to the predictions of theoretical models, from which we conclude that the knots at the head of the jets are not matter accumulated during the jet expansion through the circumstellar medium, neither can their origin be explained by the proposed HD or MHD interacting-wind models for the formation of jets/ansae, since the densities as well as the main excitation mechanisms of the knots, disagree with model predictions.Comment: Figure 1 was changed because features were misidentified in the previous version. 17 pages including 5 figures and 3 tables. ApJ in press. Also available at http://www.iac.es/galeria/denise

    Knots in the outer shells of the planetary nebulae IC 2553 and NGC 5882

    Get PDF
    We present images and high-resolution spectra of the planetary nebulae IC 2553 and NGC 5882. Spatio-kinematic modeling of the nebulae shows that they are composed of a markedly elongated inner shell, and of a less aspherical outer shell expanding at a considerably higher velocity than the inner one. Embedded in the outer shells of both nebulae are found several low-ionization knots. In IC 2553, the knots show a point-symmetric distribution with respect to the central star: one possible explanation for their formation is that they are the survivors of pre-existing point-symmetric condensations in the AGB wind, a fact which would imply a quite peculiar mass-loss geometry from the giant progenitor. In the case of NGC 5882, the lack of symmetry in the distribution of the observed low-ionization structures makes it possible that they are the result of in situ instabilities.Comment: 20 pages including 1 table and 6 figures. ApJ accepted. Also available at http://andromeda.roque.ing.iac.es/~sanchez/ingpub/index2000.htm
    • …
    corecore