224 research outputs found

    Colors and taxonomy of Centaurs and Trans-Neptunian Objects

    Full text link
    The study of the surface properties of Centaurs and Trans-Neptunian Objects (TNOs) provides essential information about the early conditions and evolution of the outer Solar System. Due to the faintness of most of these distant and icy bodies, photometry currently constitutes the best technique to survey a statistically significant number of them. Our aim is to investigate color properties of a large sample of minor bodies of the outer Solar System, and set their taxonomic classification. We carried out visible and near-infrared photometry of Centaurs and TNOs, making use, respectively, of the FORS2 and ISAAC instruments at the Very Large Telescope (European Southern Observatory). Using G-mode analysis, we derived taxonomic classifications according to the Barucci et al. (2005a) system. We report photometric observations of 31 objects, 10 of them have their colors reported for the first time ever. 28 Centaurs and TNOs have been assigned to a taxon. We combined the entire sample of 38 objects taxonomically classified in the framework of our programme (28 objects from this work; 10 objects from DeMeo et al. 2009a) with previously classified TNOs and Centaurs, looking for correlations between taxonomy and dynamics. We compared our photometric results to literature data, finding hints of heterogeneity for the surfaces of 4 objects.Comment: 7 pages, 4 figures. To be published in Astronomy and Astrophysic

    Spectral and Spin Measurement of Two Small and Fast-Rotating Near-Earth Asteroids

    Full text link
    In May 2012 two asteroids made near-miss "grazing" passes at distances of a few Earth-radii: 2012 KP24 passed at nine Earth-radii and 2012 KT42 at only three Earth-radii. The latter passed inside the orbital distance of geosynchronous satellites. From spectral and imaging measurements using NASA's 3-m Infrared Telescope Facility (IRTF), we deduce taxonomic, rotational, and physical properties. Their spectral characteristics are somewhat atypical among near-Earth asteroids: C-complex for 2012 KP24 and B-type for 2012 KT42, from which we interpret the albedos of both asteroids to be between 0.10 and 0.15 and effective diameters of 20+-2 and 6+-1 meters, respectively. Among B-type asteroids, the spectrum of 2012 KT42 is most similar to 3200 Phaethon and 4015 Wilson-Harrington. Not only are these among the smallest asteroids spectrally measured, we also find they are among the fastest-spinning: 2012 KP24 completes a rotation in 2.5008+-0.0006 minutes and 2012 KT42 rotates in 3.634+-0.001 minutes.Comment: 4 pages, 3 figures, accepted for publication in Icaru

    Evolution from protoplanetary to debris discs: The transition disc around HD 166191

    Full text link
    HD 166191 has been identified by several studies as hosting a rare and extremely bright warm debris disc with an additional outer cool disc component. However, an alternative interpretation is that the star hosts a disc that is currently in transition between a full gas disc and a largely gas-free debris disc. With the help of new optical to mid-IR spectra and Herschel imaging, we argue that the latter interpretation is supported in several ways: i) we show that HD 166191 is co-moving with the ~4 Myr-old Herbig Ae star HD 163296, suggesting that the two have the same age, ii) the disc spectrum of HD 166191 is well matched by a standard radiative transfer model of a gaseous protoplanetary disc with an inner hole, and iii) the HD 166191 mid-IR silicate feature is more consistent with similarly primordial objects. We note some potential issues with the debris disc interpretation that should be considered for such extreme objects, whose lifetime at the current brightness is mush shorter than the stellar age, or in the case of the outer component requires a mass comparable to the solid component of the Solar nebula. These aspects individually and collectively argue that HD 166191 is a 4-5 Myr old star that hosts a gaseous transition disc. Though it does not argue in favour of either scenario, we find strong evidence for 3-5 um disc variability. We place HD 166191 in context with discs at different evolutionary stages, showing that it is a potentially important object for understanding the protoplanetary to debris disc transition.Comment: accepted to MNRAS, fixed typos in abstract and axis labe

    Multiple and Fast: The Accretion of Ordinary Chondrite Parent Bodies

    Get PDF
    Although petrologic, chemical and isotopic studies of ordinary chondrites and meteorites in general have largely helped establish a chronology of the earliest events of planetesimal formation and their evolution, there are several questions that cannot be resolved via laboratory measurements and/or experiments only. Here we propose rationale for several new constraints on the formation and evolution of ordinary chondrite parent bodies (and by extension most planetesimals) from newly available spectral measurements and mineralogical analysis of main belt S-type asteroids (83 objects) and unequilibrated ordinary chondrite meteorites (53 samples). Based on the latter, we suggest spectral data may be used to distinguish whether an ordinary chondrite was formed near the surface or in the interior of its parent body. If these constraints are correct, the suggested implications include that: i) large groups of compositionally similar asteroids are a natural outcome of planetesimal formation and, consequently, meteorites within a given class can originate from multiple parent bodies; ii) the surfaces of large (up to ~200km) S-type main-belt asteroids expose mostly the interiors of the primordial bodies, a likely consequence of impacts by small asteroids (D<10km) in the early solar system (Ciesla et al. 2013); iii) the duration of accretion of the H chondrite parent bodies was likely short (instantaneous or in less then ~10^5 yr but certainly not as long as 1 Myr); iv) LL-like bodies formed closer to the Sun than H-like bodies, a possible consequence of radial mixing and size sorting of chondrules in the protoplanetary disk prior to accretion.Comment: Accepted for publication in Ap

    Visible spectroscopy of the new ESO Large Program on trans-Neptunian objects and Centaurs: final results

    Full text link
    A second large programme (LP) for the physical studies of TNOs and Centaurs, started at ESO Cerro Paranal on October 2006 to obtain high-quality data, has recently been concluded. In this paper we present the spectra of these pristine bodies obtained in the visible range during the last two semesters of the LP. We investigate the spectral behaviour of the TNOs and Centaurs observed, and we analyse the spectral slopes distribution of the full data set coming from this LP and from the literature. We computed the spectral slope for each observed object, and searched for possible weak absorption features. A statistical analysis was performed on a total sample of 73 TNOs and Centaurs to look for possible correlations between dynamical classes, orbital parameters, and spectral gradient. We obtained new spectra for 28 bodies, 15 of which were observed for the first time. All the new presented spectra are featureless, including 2003 AZ84, for which a faint and broad absorption band possibly attributed to hydrated silicates on its surface has been reported. The data confirm a wide variety of spectral behaviours, with neutral--grey to very red gradients. An analysis of the spectral slopes available from this LP and in the literature for a total sample of 73 Centaurs and TNOs shows that there is a lack of very red objects in the classical population. We present the results of the statistical analysis of the spectral slope distribution versus orbital parameters. In particular, we confirm a strong anticorrelation between spectral slope and orbital inclination for the classical population. A strong correlation is also found between the spectral slope and orbital eccentricity for resonant TNOs, with objects having higher spectral slope values with increasing eccentricity.Comment: 11 pages, 9 figure

    Compositional homogeneity of CM parent bodies.

    Get PDF
    CM chondrites are the most common type of hydrated meteorites, making up ∼1.5% of all falls. Whereas most CM chondrites experienced only low-temperature (∼0°C–120°C) aqueous alteration, the existence of a small fraction of CM chondrites that suffered both hydration and heating complicates our understanding of the early thermal evolution of the CM parent body(ies). Here, we provide new constraints on the collisional and thermal history of CM-like bodies from a comparison between newly acquired spectral measurements of main-belt Ch/Cgh-type asteroids (70 objects) and existing laboratory spectral measurements of CM chondrites. It first appears that the spectral variation observed among CM-like bodies is essentially due to variations in the average regolith grain size. Second, the spectral properties of the vast majority (unheated) of CM chondrites resemble both the surfaces and the interiors of CM-like bodies, implying a “low” temperature ( 100 km)—supposedly primordial—Ch/ Cgh-type main-belt asteroids likely expose the interiors of the primordial CM parent bodies, a possible consequence of impacts by small asteroids (D < 10 km) in the early solar system.The MIT component of this work is supported by NASA grant 09-NEOO009-0001, and by the National Science Foundation under grants Nos. 0506716 and 0907766. F.E.D. acknowledges support from NASA under grant No. NNX12AL26G issued through the Planetary Astronomy Program. E.A.C. thanks the Canada Foundation for Innovation, the Manitoba Research Innovations Fund, the Canadian Space Agency, the University of Winnipeg, and the Natural Sciences and Engineering Research Council of Canada for supporting the establishment and operation of the University of Winnipeg's Planetary Spectrophotometer Facility and this study.http://iopscience.iop.org/article/10.3847/0004-6256/152/3/54/met

    The small binary asteroid (939) Isberga

    Get PDF
    In understanding the composition and internal structure of asteroids, their density is perhaps the most diagnostic quantity. We aim here to characterize the surface composition, mutual orbit, size, mass, and density of the small main-belt binary asteroid (939) Isberga. For that, we conduct a suite of multi-technique observations, including optical lightcurves over many epochs, near-infrared spectroscopy, and interferometry in the thermal infrared. We develop a simple geometric model of binary systems to analyze the interferometric data in combination with the results of the lightcurve modeling. From spectroscopy, we classify Ibserga as a Sq-type asteroid, consistent with the albedo of 0.140.06+0.09^{+0.09}_{-0.06} (all uncertainties are reported as 3-σ\sigma range) we determine (average albedo of S-types is 0.197 ±\pm 0.153, Pravec et al., 2012, Icarus 221, 365-387). Lightcurve analysis reveals that the mutual orbit has a period of 26.6304 ±\pm 0.0001 h, is close to circular, and has pole coordinates within 7 deg. of (225, +86) in ECJ2000, implying a low obliquity of 1.5 deg. The combined analysis of lightcurves and interferometric data allows us to determine the dimension of the system and we find volume-equivalent diameters of 12.41.2+2.5^{+2.5}_{-1.2} km and 3.60.3+0.7^{+0.7}_{-0.3} km for Isberga and its satellite, circling each other on a 33 km wide orbit. Their density is assumed equal and found to be 2.912.01+1.722.91^{+1.72}_{-2.01} g.cm3^{-3}, lower than that of the associated ordinary chondrite meteorites, suggesting the presence of some macroporosity, but typical of S-types of the same size range (Carry, 2012, P\&SS 73, 98-118). The present study is the first direct measurement of the size of a small main-belt binary. Although the interferometric observations of Isberga are at the edge of MIDI capabilities, the method described here is applicable to others suites of instruments (e.g, LBT, ALMA).Comment: 12 pages, 6 figures, 4 table

    TNOs are Cool: A survey of the trans-Neptunian region V. Physical characterization of 18 Plutinos using Herschel PACS observations

    Full text link
    We present Herschel PACS photometry of 18 Plutinos and determine sizes and albedos for these objects using thermal modeling. We analyze our results for correlations, draw conclusions on the Plutino size distribution, and compare to earlier results. Flux densities are derived from PACS mini scan-maps using specialized data reduction and photometry methods. In order to improve the quality of our results, we combine our PACS data with existing Spitzer MIPS data where possible, and refine existing absolute magnitudes for the targets. The physical characterization of our sample is done using a thermal model. Uncertainties of the physical parameters are derived using customized Monte Carlo methods. The correlation analysis is performed using a bootstrap Spearman rank analysis. We find the sizes of our Plutinos to range from 150 to 730 km and geometric albedos to vary between 0.04 and 0.28. The average albedo of the sample is 0.08 \pm 0.03, which is comparable to the mean albedo of Centaurs, Jupiter Family comets and other Trans-Neptunian Objects. We were able to calibrate the Plutino size scale for the first time and find the cumulative Plutino size distribution to be best fit using a cumulative power law with q = 2 at sizes ranging from 120-400 km and q = 3 at larger sizes. We revise the bulk density of 1999 TC36 and find a density of 0.64 (+0.15/-0.11) g cm-3. On the basis of a modified Spearman rank analysis technique our Plutino sample appears to be biased with respect to object size but unbiased with respect to albedo. Furthermore, we find biases based on geometrical aspects and color in our sample. There is qualitative evidence that icy Plutinos have higher albedos than the average of the sample.Comment: 18 pages, 8 figures, 8 tables, accepted for publication in A&

    Physical properties of ESA Rosetta target asteroid (21) Lutetia: Shape and flyby geometry

    Full text link
    Aims. We determine the physical properties (spin state and shape) of asteroid (21) Lutetia, target of the ESA Rosetta mission, to help in preparing for observations during the flyby on 2010 July 10 by predicting the orientation of Lutetia as seen from Rosetta. Methods. We use our novel KOALA inversion algorithm to determine the physical properties of asteroids from a combination of optical lightcurves, disk-resolved images, and stellar occultations, although the latter are not available for (21) Lutetia. Results. We find the spin axis of (21) Lutetia to lie within 5 degrees of ({\lambda} = 52 deg., {\beta} = -6 deg.) in Ecliptic J2000 reference frame (equatorial {\alpha} = 52 deg., {\delta} = +12 deg.), and determine an improved sidereal period of 8.168 270 \pm 0.000 001 h. This pole solution implies the southern hemisphere of Lutetia will be in "seasonal" shadow at the time of the flyby. The apparent cross-section of Lutetia is triangular as seen "pole-on" and more rectangular as seen "equator-on". The best-fit model suggests the presence of several concavities. The largest of these is close to the north pole and may be associated with large impacts.Comment: 17 pages, 5 figures, 3 tables, submitted to Astronomy and Astrophysic
    corecore