27 research outputs found

    High-angle-of-attack pneumatic lag and upwash corrections for a hemispherical flow direction sensor

    Get PDF
    As part of the NASA F-14 high angle of attack flight test program, a nose mounted hemispherical flow direction sensor was calibrated against a fuselage mounted movable vane flow angle sensor. Significant discrepancies were found to exist in the angle of attack measurements. A two fold approach taken to resolve these discrepancies during subsonic flight is described. First, the sensing integrity of the isolated hemispherical sensor is established by wind tunnel data extending to an angle of attack of 60 deg. Second, two probable causes for the discrepancies, pneumatic lag and upwash, are examined. Methods of identifying and compensating for lag and upwash are presented. The wind tunnel data verify that the isolated hemispherical sensor is sufficiently accurate for static conditions with angles of attack up to 60 deg and angles of sideslip up to 30 deg. Analysis of flight data for two high angle of attack maneuvers establishes that pneumatic lag and upwash are highly correlated with the discrepancies between the hemispherical and vane type sensor measurements

    Regulation of neutrophil senescence by microRNAs

    Get PDF
    Neutrophils are rapidly recruited to sites of tissue injury or infection, where they protect against invading pathogens. Neutrophil functions are limited by a process of neutrophil senescence, which renders the cells unable to respond to chemoattractants, carry out respiratory burst, or degranulate. In parallel, aged neutrophils also undergo spontaneous apoptosis, which can be delayed by factors such as GMCSF. This is then followed by their subsequent removal by phagocytic cells such as macrophages, thereby preventing unwanted inflammation and tissue damage. Neutrophils translate mRNA to make new proteins that are important in maintaining functional longevity. We therefore hypothesised that neutrophil functions and lifespan might be regulated by microRNAs expressed within human neutrophils. Total RNA from highly purified neutrophils was prepared and subjected to microarray analysis using the Agilent human miRNA microarray V3. We found human neutrophils expressed a selected repertoire of 148 microRNAs and that 6 of these were significantly upregulated after a period of 4 hours in culture, at a time when the contribution of apoptosis is negligible. A list of predicted targets for these 6 microRNAs was generated from http://mirecords.biolead.org and compared to mRNA species downregulated over time, revealing 83 genes targeted by at least 2 out of the 6 regulated microRNAs. Pathway analysis of genes containing binding sites for these microRNAs identified the following pathways: chemokine and cytokine signalling, Ras pathway, and regulation of the actin cytoskeleton. Our data suggest that microRNAs may play a role in the regulation of neutrophil senescence and further suggest that manipulation of microRNAs might represent an area of future therapeutic interest for the treatment of inflammatory disease

    Clinical and molecular epidemiology of methicillin-resistant Staphylococcus aureus in New Zealand: rapid emergence of sequence type 5 (ST5)-SCCmec-IV as the dominant community-associated MRSA clone.

    Get PDF
    The predominant community-associated MRSA strains vary between geographic settings, with ST8-IV USA300 being the commonest clone in North America, and the ST30-IV Southwest Pacific clone established as the dominant clone in New Zealand for the past two decades. Moreover, distinct epidemiological risk factors have been described for colonisation and/or infection with CA-MRSA strains, although these associations have not previously been characterized in New Zealand. Based on data from the annual New Zealand MRSA survey, we sought to describe the clinical and molecular epidemiology of MRSA in New Zealand. All non-duplicate clinical MRSA isolates from New Zealand diagnostic laboratories collected as part of the annual MRSA survey were included. Demographic data was collected for all patients, including age, gender, ethnicity, social deprivation index and hospitalization history. MRSA was isolated from clinical specimens from 3,323 patients during the 2005 to 2011 annual surveys. There were marked ethnic differences, with MRSA isolation rates significantly higher in Māori and Pacific Peoples. Over the study period, there was a significant increase in CA-MRSA, and a previously unidentified PVL-negative ST5-IV spa t002 clone replaced the PVL-positive ST30-IV Southwest Pacific clone as the dominant CA-MRSA clone. Of particular concern was the finding of several successful and virulent MRSA clones from other geographic settings, including ST93-IV (Queensland CA-MRSA), ST8-IV (USA300) and ST772-V (Bengal Bay MRSA). Ongoing molecular surveillance is essential to prevent these MRSA strains becoming endemic in the New Zealand healthcare setting

    Seasonality of MRSA Infections

    Get PDF
    Using MRSA isolates submitted to our hospital microbiology laboratory January 2001–March 2010 and the number of our emergency department (ED) visits, quarterly community-associated (CA) and hospital-associated (HA) MRSA infections were modeled using Poisson regressions. For pediatric patients, approximately 1.85x (95% CI 1.45x–2.36x, adj. p<0.0001) as many CA-MRSA infections per ED visit occurred in the second two quarters as occurred in the first two quarters. For adult patients, 1.14x (95% CI 1.01x–1.29x, adj.p = 0.03) as many infections per ED visit occurred in the second two quarters as in the first two quarters. Approximately 2.94x (95% CI 1.39x–6.21x, adj.p = 0.015) as many HA-MRSA infections per hospital admission occurred in the second two quarters as occurred in the first two quarters for pediatric patients. No seasonal variation was observed among adult HA-MRSA infections per hospital admission. We demonstrated seasonality of MRSA infections and provide a summary table of similar observations in other studies

    Streptococcus pneumoniae Clonal Complex 199: Genetic Diversity and Tissue-Specific Virulence

    Get PDF
    Streptococcus pneumoniae is an important cause of otitis media and invasive disease. Since introduction of the heptavalent pneumococcal conjugate vaccine, there has been an increase in replacement disease due to serotype 19A clonal complex (CC)199 isolates. The goals of this study were to 1) describe genetic diversity among nineteen CC199 isolates from carriage, middle ear, blood, and cerebrospinal fluid, 2) compare CC199 19A (n = 3) and 15B/C (n = 2) isolates in the chinchilla model for pneumococcal disease, and 3) identify accessory genes associated with tissue-specific disease among a larger collection of S. pneumoniae isolates. CC199 isolates were analyzed by comparative genome hybridization. One hundred and twenty-seven genes were variably present. The CC199 phylogeny split into two main clades, one comprised predominantly of carriage isolates and another of disease isolates. Ability to colonize and cause disease did not differ by serotype in the chinchilla model. However, isolates from the disease clade were associated with faster time to bacteremia compared to carriage clade isolates. One 19A isolate exhibited hypervirulence. Twelve tissue-specific genes/regions were identified by correspondence analysis. After screening a diverse collection of 326 isolates, spr0282 was associated with carriage. Four genes/regions, SP0163, SP0463, SPN05002 and RD8a were associated with middle ear isolates. SPN05002 also associated with blood and CSF, while RD8a associated with blood isolates. The hypervirulent isolate's genome was sequenced using the Solexa paired-end sequencing platform and compared to that of a reference serotype 19A isolate, revealing the presence of a novel 20 kb region with sequence similarity to bacteriophage genes. Genetic factors other than serotype may modulate virulence potential in CC199. These studies have implications for the long-term effectiveness of conjugate vaccines. Ideally, future vaccines would target common proteins to effectively reduce carriage and disease in the vaccinated population

    Genome Sequence of a Lancefield Group C Streptococcus zooepidemicus Strain Causing Epidemic Nephritis: New Information about an Old Disease

    Get PDF
    Outbreaks of disease attributable to human error or natural causes can provide unique opportunities to gain new information about host-pathogen interactions and new leads for pathogenesis research. Poststreptococcal glomerulonephritis (PSGN), a sequela of infection with pathogenic streptococci, is a common cause of preventable kidney disease worldwide. Although PSGN usually occurs after infection with group A streptococci, organisms of Lancefield group C and G also can be responsible. Despite decades of study, the molecular pathogenesis of PSGN is poorly understood. As a first step toward gaining new information about PSGN pathogenesis, we sequenced the genome of Streptococcus equi subsp. zooepidemicus strain MGCS10565, a group C organism that caused a very large and unusually severe epidemic of nephritis in Brazil. The genome is a circular chromosome of 2,024,171 bp. The genome shares extensive gene content, including many virulence factors, with genetically related group A streptococci, but unexpectedly lacks prophages. The genome contains many apparently foreign genes interspersed around the chromosome, consistent with the presence of a full array of genes required for natural competence. An inordinately large family of genes encodes secreted extracellular collagen-like proteins with multiple integrin-binding motifs. The absence of a gene related to speB rules out the long-held belief that streptococcal pyrogenic exotoxin B or antibodies reacting with it singularly cause PSGN. Many proteins previously implicated in GAS PSGN, such as streptokinase, are either highly divergent in strain MGCS10565 or are not more closely related between these species than to orthologs present in other streptococci that do not commonly cause PSGN. Our analysis provides a comparative genomics framework for renewed appraisal of molecular events underlying APSGN pathogenesis

    In Vitro Serial Passage of Staphylococcus aureus: Changes in Physiology, Virulence Factor Production, and agr Nucleotide Sequence

    Get PDF
    Recently, we observed that Staphylococcus aureus strains newly isolated from patients had twofold-higher aconitase activity than a strain passaged extensively in vitro, leading us to hypothesize that aconitase specific activity decreases over time during in vitro passage. To test this hypothesis, a strain recovered from a patient with toxic shock syndrome was serially passaged for 6 weeks, and the aconitase activity was measured. Aconitase specific activity decreased 38% (P < 0.001) by the sixth week in culture. During serial passage, S. aureus existed as a heterogeneous population with two colony types that had pronounced (wild type) or negligible zones of beta-hemolytic activity. The cell density-sensing accessory gene regulatory (agr) system regulates beta-hemolytic activity. Surprisingly, the percentage of colonies with a wild-type beta-hemolytic phenotype correlated strongly with aconitase specific activity (ρ = 0.96), suggesting a common cause of the decreased aconitase specific activity and the variation in percentage of beta-hemolytic colonies. The loss of the beta-hemolytic phenotype also coincided with the occurrence of mutations in the agrC coding region or the intergenic region between agrC and agrA in the derivative strains. Our results demonstrate that in vitro growth is sufficient to result in mutations within the agr operon. Additionally, our results demonstrate that S. aureus undergoes significant phenotypic and genotypic changes during serial passage and suggest that vigilance should be used when extrapolating data obtained from the study of high-passage strains

    Host–microbe interaction systems biology: lifecycle transcriptomics and comparative genomics

    No full text
    The use of microarray and comparative genomic technologies for the analysis of host–pathogen interactions has led to a greater understanding of the biological systems involved in infectious disease processes. Transcriptome analysis of intracellular pathogens at single or multiple time points during infection offers insight into the pathogen intracellular lifecycle. Host–pathogen transcriptome analysis in vivo , over time, enables characterization of both the pathogen and the host during the dynamic, multicellular host response. Comparative genomics using hybridization microarray-based comparative whole-genome resequencing or de novo whole-genome sequencing can identify the genetic factors responsible for pathogen evolutionary divergence, emergence, reemergence or the genetic basis for different pathogenic phenotypes. Together, microarray and comparative genomic technologies will continue to advance our understanding of pathogen evolution and assist in combating human infectious disease
    corecore