202 research outputs found

    Production and isolation of 72As from proton irradiation of enriched 72GeO2 for the development of targeted PET/MRI agents

    Get PDF
    Introduction Two current major research topics in nuclear medicine are in the development of long-lived positron-emitting nuclides for imaging tracers with long biological half-lives and in theranostics, imaging nuclides which have a chemically analogous therapy isotope. As shown in TABLE 1, the radioisotopes of arsenic (As) are well suited for both of these tasks with several imaging and therapy isotopes of a variety of biologically relevant half-lives accessible through the use of small medical cyclotrons. The five naturally abundant isotopes of germanium are both a boon and challenge for the medical nuclear chemist. They are beneficial in that they facilitate a wide array of producible radioarsenic isotopes. They are a challenge as monoisotopic radioarsenic production requires isotopically-enriched targets that are expensive and of limited availability. This makes it highly desirable that the germanium target material is reclaimed from arsenic isolation chemistry. One major factor which has limited the development of radioarsenic has been difficulties in its incorporation into biologically relevant targeting vectors. Previous studies have labeled antibodies and polymers through covalent bonding of arsenite (As(III)) with the sulfydryl group1,2,3. Recent work in our group has shown the facile synthesis and utility of superparamagnetic iron oxide nanoparticle- (SPION-)bound radioarsenic as a dual modality positron emission tomography (PET)/magnetic resonance imaging (MRI) agent4. Presently, we have built upon previous studies producing, isolating, and labeling untargeted SPION with radioarsenic4,5. We have incorp-rated the use of isotopically-enriched 72GeO2 for the production of radioisotopically pure 72As. The bulk of the 72GeO2 target material was re-claimed from the arsenic isolation chemical procedure for reuse in future irradiations. The 72As was used for ongoing development toward the synthesis of targeted, As-SPION-based, dual-modality PET/MRI agents. Material and Methods Targets of ~100 mg of isotopically-enriched 72GeO2 (96.6% 72Ge, 2.86% 73Ge, 0.35% 70Ge, 0.2% 74Ge, 0.01% 76Ge, Isoflex USA) were pressed into a niobium beam stop at 225 MPa, covered with a 25 ”m HAVAR containment foil, attached to a water-cooling target port, and irradiated with 3 ”A of 16.1 MeV protons for 2–3 hours using a GE PETtrace cyclotron. After irradiation, the target and beam stop were assembled into a PTFE dissolution apparatus, where the 72GeO2 target material was dissolved with the addition of 2 mL of 4 M NaOH and subsequent stirring. After dissolution was completed, the clear, colorless solution was transferred to a fritted glass column and the bulk 72GeO2 was reprecipitated by neutralizing the solution with the addition of 630 ”L [HCl]conc, filtered, and rinsed with 1 mL [HCl]conc. To the combined 72As-containing filtrates, 100 ”L 30% H2O2 was added to ensure that 72As was in the nonvolatile As(V) oxidation state. The ~3 mL solution was then evaporated at 115 ˚C while the vessel was purged with argon, followed by a second addition of 100 ”L H2O2 after the volume was reduced to 1 mL. When the filtrate volume was ~0.3 mL, the vessel was removed from heat, allowed to cool with argon flow, and the arsenic reconstituted in 1 mL [HCl]conc and loaded onto a 1.5 mL bed volume Bio-Rad AG 1×8, 200–400 mesh anion exchange column preconditioned with 10 M HCl. The radioarsenic was eluted in 10 M HCl in the next ~10 mL, with 90% of the activity eluting in a 4 mL fraction. The column was then eluted with 5 mL 1 M HCl. The 72As-rich 10 M HCl fraction was reduced to As(III) with the addition of ~100 mg CuCl, and heating to 60 ˚C for 1 hour. The resulting AsCl3 was then extracted twice into 4 mL cyclohexane, which were combined and back extracted into 500 ”L of water as As(OH)3. This solution of 72As in H2O was then used directly to label SPION and for subsequent experiments conjugating 72As-SPION with TRC105, an angiogenesis-marking monoclonal antibody (MAb) targeting endoglin/CD105. Several methods were initially attempted involving directly conjugating the surface-modified SPION to the MAb through a polyethylene glycol (PEG) linker. More recent studies have investigated the radioarsenic labeling of SPION encapsulated in hollow mesoporous silica nanoparticles (SPION@HMSN) and its subsequent conjugation to TRC105. Results and Conclusion Irradiation of pressed, isotopically-enriched 72GeO2 resulted in a production yield for 72As of 17 ± 2 mCi/(”A·hr·g) and for 71As of 0.37 ± 0.04 mCi/(”A·hr·g), which are 64 % and 33 %, of those predicted from literature6, respectively. However, these production yields are in agreement with those scaled from observed production yields using analagous natGeO2 targets. The end-of-bombardment 72As radionuclidic purity can be improved by minimizing the 72Ge(p,2n)71As reaction by degrading the beam energy. A 125 ”m Nb containment foil would degrade impinging protons to 14.1 MeV and is predicted to reduce 71As yield by a factor of three, while only reducing 72As yield by 1 %6, improving end-of-bombardment radionuclidic purity from 98 % to greater than 99 %. Overall decay-corrected radiochemical yield of the 72As isolation procedure from 72GeO2 were 51 ± 2 % (n = 3) in agreement with those observed with natGeO2 57 ± 7 % (n = 14). The beam current was limited to 3 ”A as higher cur-rents 4–5 ”A exhibited inconsistent dissolution and reprecipitation steps, resulting in an overall yield of 44 ± 21 % (n = 6). Dissolution time also played an important role in overall yield with at least one hour necessary to minimize losses in these first two steps. The separation procedure effectively removed all radiochemical contaminants and resulted in 72As(OH)3 isolated in a small volume, pH~4.5 water solution. Over the course of minutes to hours after back extraction, rapid auto-oxidation to 72AsO4H3 was observed. The bulk 72GeO2 target material, which was reclaimed from the isolation procedure, is being collected for future use. The synthesis of a targeted PET/MRI agent based on the functionalization of 72As-SPION has proved to be a difficult task. Experiments conjugating 72As-SPION to TRC105 through a PEG linker were unsuccessful, despite the investigation of a variety bioconjugation procedures. Current work is investigating the use of SPION@HMSN, which have a similar affinity for 72As as unencapsulated SPION. This new class of 72As-labeled SPION@HMSN has a hollow cavity for potential anti-cancer drug loading, as well as the mesoporous silica surface, which may facilitate the efficient conjugation of TRC105 using a well-developed bioconjugation technique. In summary, radioarsenic holds potential in the field of diagnostic and therapeutic nuclear medicine. However, this potential remains locked behind challenges related to its production and useful in vivo targeting. The present work strives to address several of these challenges through the use of enriched 72GeO2 target material, a chemical isolation procedure that reclaims the bulk of the target material, and the investigation of new targeted nanoparticle-based PET/MRI agents

    Production of [11C]cyanide for the synthesis of indole-3-[1-11C]acetic acid and PET imaging of auxin transport in living plants: Production of [11C]cyanide for the synthesis of indole-3-[1-11C]acetic acid and PET imaging of auxin transport in living plants

    Get PDF
    Introduction Since its development by Al Wolf and colleagues in the 1970s1, [11C]cyanide has been a useful synthon for a wide variety of reactions, most notably those producing [1-11C]-labeled amino acids2. However, despite its position as rote gas-phase product, the catalytic synthesis is difficult to optimize and often only perfunctorily dis-cussed in the radiochemical literature. Recently, [11C]CN– has been used in the synthesis of indole-3-[1-11C]acetic acid ([11C]IAA), the principal phytohormone responsible for a wide variety of growth and development functions in plants3. The University of Wisconsin has expertise in cyclotron production and radiochemistry of 11C and previous experience in the PET imaging of plants4,5. In this abstract, we present work on optimizing [11C]CN– production for the synthesis of [11C]IAA and the PET imaging of auxin transport in living plants. Material and Methods [11C]CH4 was produced by irradiating 270 psi of 90% N2, 10% H2 with 30 ”A of 16.1 MeV protons from a GE PETtrace cyclotron. After irradiation, the [11C]CH4 was converted to [11C]CN– by passing through a quartz tube containing 3.0 g of Pt wire and powder between quartz wool frits inside a 800–1000 ˚C Carbolite tube furnace. The constituents and flow rate of the [11C]CH4 carrier gas were varied in an effort to optimize the oven\'s catalytic production of [11C]CN– from CH4 and NH3. The following conditions were investigated: i. Directly flowing irradiated target gas versus trapping, purging and releasing [11C]CH4 from a −178 ˚C HayeSep D column in He through the Pt furnace. ii. Varying the amount of anhydrous NH3 (99.995%) mixed with the [11C]CH4 carrier gas prior to the Pt furnace. Amounts varied from zero to 35 % of gas flow. iii. Varying the purity of the added NH3 gas with the addition of a hydride gas purifier (Entegris model 35KF), reducing O2 and H2O impurities to < 12 ppb. iv. Varying the flow rate of He gas carrying trapped, purged and released [11C]CH4. After flowing through the Pt furnace, the gas stream was bubbled through 300 ”L of DMSO containing IAA precursor gramine (1 mg), then passed through a 60×5 cm column containing ascarite to absorb [11C]CO2, followed by a −178˚C Porapak Q column to trap [11C]CH4 and [11C]CO. After bubbling, the DMSO/gramine vial was heated to 140 ˚C to react the gramine with [11C]CN–, forming the intermediate indole-3-[1-11C]acetonitrile ([11C]IAN), which was subsequently purified by solid phase extraction (SPE). The reaction mixture was diluted into 20 mL water and loaded onto a Waters Sep-Pak light C18 cartridge, followed by rinsing with 5 mL of 0.1% HCl : acetonitrile (99 : 1) and 10 mL of the same mixture in ratio 95 : 5, and finally eluted with 0.5 mL of diethyl ether. The ether was subsequently evaporated under argon flow, followed by the hydrolysis of [11C]IAN to [11C]IAA with the addition of 300 ”L 1 M NaOH and heating to 140 ˚C for 5 minutes. After hydrolysis, the solution was neutralized with 300 ”L 1 M HCl and purified using preparative high-performance liquid chromatography (HPLC) using a Phenomenex Luna C18 (10ÎŒ, 250×10mm) column with a mobile phase acetonitrile : 0.1% formic acid in H2O (35 : 65) at flow rate of 3 mL/min. The [11C]IAA peak, eluting at 12 minutes, was collected and rotary evaporated to dryness, then again after the addition of 5 mL acetonitrile, followed by its reconstitution in 50 ”L of water. Analytical HPLC was performed on the [11C]IAA before and after this evaporation procedure using a Phenomenex Kinetex C18 (2.6ÎŒ, 75× 4.6 mm) column with a linear gradient elution over 20 minutes of 10 : 90–30 : 70 (acetonitrile : 0.1% formic acid) at a 1 mL/min flow rate, eluting at 7.6 minutes. The transport of [11C]IAA was monitored following administration through the severed petiole of rapid cycling Brassica oleracea (rcBo) using a Siemens microPET P4 scanner. Transport was compared following administration to the first true leaf versus the final fully formed leaf in plants with and without exposure to the polar auxin transport inhibitor naphthylphthalamic acid (NPA). Results and Conclusion Optimization of the [11C]CN– gas phase chemistry was performed using two key metrics for measuring conversion yield. First is the fraction of total produced radioactivity that trapped in the DMSO/gramine solution (denoted %DMSO), and second, the fraction of DMSO/gramine-trapped activity that was able to react with gramine to form [11C]IAN (denoted %CN–). Under certain conditions, the former of these metrics experienced significant losses due to unconverted [11C]CH4 or through combustion, forming [11C]CO2 or [11C]CO. The latter metric experienced losses due to production of incomplete oxidation products of the CH4-NH3 reaction, such as methylamine. Total [11C]CH4 to [11C]CN– con-version yields is reported by the product of the two metrics. It was initially hypothesized that the irradiation of a 90% N2, 10% H2 target gas would produce sufficient in-target-hot-atom-produced NH3 to convert [11C]CH4 to [11C]CN– in the Pt furnace. However, conversion yields were found to be low and highly variable, with 13 ± 8 % trapping in DMSO/gramine, 9 ± 9 % of which reacted as CN– (n = 15). While in disagreement with previous reports1, this is likely as a result the batch irradiation conditions resulting ammonia losses in the target chamber and along the tubing walls. Yields and reproducibility were improved when combining the target gas with a stream of anhydrous NH3 gas flow with conversion yields reported in TABLE 1. However, these yields remained undesirably low, potentially as a result of the 10% H2 carrier gas having an adverse effect on the oxidative conversion of [11C]CH4 to [11C]CN–. To remedy this, the irradiated target gas was trapped, purged, released in He and combined with NH3 gas before flowing through the Pt furnace. Initial experiments using 99.995% anhydrous NH3 gas resulted in very poor (< 0.1%) [11C]CN– yields as a result of nearly quantitative combustion forming [11C]CO2. Installation of a hydride gas purifier to reduce O2 and H2O impurities in NH3 improved yields for CH4 in He, but did not significantly affect those from [11C]CH4 in N2/H2 target gas. In disagreement with previous reports2, conversion yields were found to be highly sensitive to overall carrier gas flow rate, with lower flow rates giving the best yields, as shown in TABLE 1. Optimization experiments are continuing. The total decay-corrected yield for the 1 hour synthesis of [11C]IAA in 50 ”L of water is 2.3 ± 0.7 %, based on the total produced [11C]CH4 with a specific activity ranging from 1–100 GBq/”mol. The principal radiochemical impurity was determined to be indole-3-carboxylic acid. The SPE procedure isolating the [11C]IAN intermediate product was optimized to minimize this impurity in the final sample. After a rapid distribution of the administered [11C]IAA through the cut petiole and throughout the rcBO plant, upward vascular transport of auxin and downward polar auxin transport was visualized through time-activity curves (TACs) of regions of interest along the shoot. Comparison of these TACS with and without exposure to NPA yields insight into the fundamental physiological process of polar auxin transport in plants. In conclusion, the Pt-catalyzed oxidative conversion of [11C]CH4 and NH3 to [11C]CN– is a challenging process to optimize and highly sensitive to carrier gas composition and flow rate. Optimization for our experimental conditions yielded several results which disagreed with previous reports. [11C]IAA produced using [11C]CN– is well suited for PET imaging of polar auxin transport in living plants

    Subregional 6-[18F]fluoro-ʟ-m-tyrosine Uptake in the Striatum in Parkinson's Disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In idiopathic Parkinson's disease (PD) the clinical features are heterogeneous and include different predominant symptoms. The aim of the present study was to determine the relationship between subregional aromatic l-amino acid decarboxylase (AADC) activity in the striatum and the cardinal motor symptoms of PD using high-resolution positron emission tomography (PET) with an AADC tracer, 6-[<sup>18</sup>F]fluoro-ʟ-<it>m</it>-tyrosine (FMT).</p> <p>Methods</p> <p>We assessed 101 patients with PD and 19 healthy volunteers. PD was diagnosed based on the UK Brain Bank criteria by two experts on movement disorders. Motor symptoms were measured with the Unified Parkinson's Disease Rating Scale (UPDRS). FMT uptake in the subregions of the striatum was analyzed using semi-automated software for region-of-interest demarcation on co-registered magnetic resonance images.</p> <p>Results</p> <p>In all PD patients, FMT uptake was decreased in the posterior putamen regardless of predominant motor symptoms and disease duration. Smaller uptake values were found in the putamen contralateral to the side with more affected limbs. The severity of bradykinesia, rigidity, and axial symptoms was correlated with the decrease of FMT uptake in the putamen, particularly in the anterior part. No significant correlation was observed between tremors and FMT uptake.</p> <p>Conclusions</p> <p>Decrease of FMT uptake in the posterior putamen appears to be most sensitive in mild PD and uptake in the anterior putamen may reflect the severity of main motor symptoms, except for tremor.</p

    CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.

    Get PDF
    Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases

    Identification of Giardia lamblia DHHC Proteins and the Role of Protein S-palmitoylation in the Encystation Process

    Get PDF
    Protein S-palmitoylation, a hydrophobic post-translational modification, is performed by protein acyltransferases that have a common DHHC Cys-rich domain (DHHC proteins), and provides a regulatory switch for protein membrane association. In this work, we analyzed the presence of DHHC proteins in the protozoa parasite Giardia lamblia and the function of the reversible S-palmitoylation of proteins during parasite differentiation into cyst. Two specific events were observed: encysting cells displayed a larger amount of palmitoylated proteins, and parasites treated with palmitoylation inhibitors produced a reduced number of mature cysts. With bioinformatics tools, we found nine DHHC proteins, potential protein acyltransferases, in the Giardia proteome. These proteins displayed a conserved structure when compared to different organisms and are distributed in different monophyletic clades. Although all Giardia DHHC proteins were found to be present in trophozoites and encysting cells, these proteins showed a different intracellular localization in trophozoites and seemed to be differently involved in the encystation process when they were overexpressed. dhhc transgenic parasites showed a different pattern of cyst wall protein expression and yielded different amounts of mature cysts when they were induced to encyst. Our findings disclosed some important issues regarding the role of DHHC proteins and palmitoylation during Giardia encystation.Fil: Merino, Maria Cecilia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de InvestigaciĂłn MĂ©dica Mercedes y MartĂ­n Ferreyra. Universidad Nacional de CĂłrdoba. Instituto de InvestigaciĂłn MĂ©dica Mercedes y MartĂ­n Ferreyra; ArgentinaFil: Zamponi, Nahuel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de InvestigaciĂłn MĂ©dica Mercedes y MartĂ­n Ferreyra. Universidad Nacional de CĂłrdoba. Instituto de InvestigaciĂłn MĂ©dica Mercedes y MartĂ­n Ferreyra; ArgentinaFil: Vranych, Cecilia VerĂłnica. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de InvestigaciĂłn MĂ©dica Mercedes y MartĂ­n Ferreyra. Universidad Nacional de CĂłrdoba. Instituto de InvestigaciĂłn MĂ©dica Mercedes y MartĂ­n Ferreyra; ArgentinaFil: Touz, Maria Carolina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de InvestigaciĂłn MĂ©dica Mercedes y MartĂ­n Ferreyra. Universidad Nacional de CĂłrdoba. Instituto de InvestigaciĂłn MĂ©dica Mercedes y MartĂ­n Ferreyra; ArgentinaFil: Ropolo, Andrea Silvana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de InvestigaciĂłn MĂ©dica Mercedes y MartĂ­n Ferreyra. Universidad Nacional de CĂłrdoba. Instituto de InvestigaciĂłn MĂ©dica Mercedes y MartĂ­n Ferreyra; Argentin

    Inherent Interfacial Mechanical Gradients in 3D Hydrogels Influence Tumor Cell Behaviors

    Get PDF
    Cells sense and respond to the rigidity of their microenvironment by altering their morphology and migration behavior. To examine this response, hydrogels with a range of moduli or mechanical gradients have been developed. Here, we show that edge effects inherent in hydrogels supported on rigid substrates also influence cell behavior. A Matrigel hydrogel was supported on a rigid glass substrate, an interface which computational techniques revealed to yield relative stiffening close to the rigid substrate support. To explore the influence of these gradients in 3D, hydrogels of varying Matrigel content were synthesized and the morphology, spreading, actin organization, and migration of glioblastoma multiforme (GBM) tumor cells were examined at the lowest (<50 ”m) and highest (>500 ”m) gel positions. GBMs adopted bipolar morphologies, displayed actin stress fiber formation, and evidenced fast, mesenchymal migration close to the substrate, whereas away from the interface, they adopted more rounded or ellipsoid morphologies, displayed poor actin architecture, and evidenced slow migration with some amoeboid characteristics. Mechanical gradients produced via edge effects could be observed with other hydrogels and substrates and permit observation of responses to multiple mechanical environments in a single hydrogel. Thus, hydrogel-support edge effects could be used to explore mechanosensitivity in a single 3D hydrogel system and should be considered in 3D hydrogel cell culture systems

    TBK1: a new player in ALS linking autophagy and neuroinflammation.

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disorder affecting motor neurons, resulting in progressive muscle weakness and death by respiratory failure. Protein and RNA aggregates are a hallmark of ALS pathology and are thought to contribute to ALS by impairing axonal transport. Mutations in several genes known to contribute to ALS result in deposition of their protein products as aggregates; these include TARDBP, C9ORF72, and SOD1. In motor neurons, this can disrupt transport of mitochondria to areas of metabolic need, resulting in damage to cells and can elicit a neuroinflammatory response leading to further neuronal damage. Recently, eight independent human genetics studies have uncovered a link between TANK-binding kinase 1 (TBK1) mutations and ALS. TBK1 belongs to the IKK-kinase family of kinases that are involved in innate immunity signaling pathways; specifically, TBK1 is an inducer of type-1 interferons. TBK1 also has a major role in autophagy and mitophagy, chiefly the phosphorylation of autophagy adaptors. Several other ALS genes are also involved in autophagy, including p62 and OPTN. TBK1 is required for efficient cargo recruitment in autophagy; mutations in TBK1 may result in impaired autophagy and contribute to the accumulation of protein aggregates and ALS pathology. In this review, we focus on the role of TBK1 in autophagy and the contributions of this process to the pathophysiology of ALS
    • 

    corecore