245 research outputs found

    Vortex-glass transition in superconducting Nb/Cu superlattices

    Full text link
    Nb/Cu superconducting superlattices have been fabricated by dc magnetron sputtering. This system shows a vortex glass transition with critical exponents similar to high temperatures superconductors exponents. The transition dymensionality is governed by the superconducting coupling regime. The vortex glass transition shows a pure two dimensional behavior in decoupled superlattices and a quasi-two dimensional behavior in the superlattice coupling regime.Comment: 9 pages, 3 figure

    Three Way Comparison between Two OMI/Aura and One POLDER/PARASOL Cloud Pressure Products

    Get PDF
    The cloud pressures determined by three different algorithms, operating on reflectances measured by two space-borne instruments in the "A" train, are compared with each other. The retrieval algorithms are based on absorption in the oxygen A-band near 760 nm, absorption by a collision induced absorption in oxygen near 477nm, and the filling in of Fraunhofer lines by rotational Raman scattering. The first algorithm operates on data collected by the POLDER instrument on board PARASOL, while the latter two operate on data from the OMI instrument on board Aura. The satellites sample the same air mass within about 15 minutes. Using one month of data, the cloud pressures from the three algorithms are found to show a similar behavior, with correlation coefficients larger than 0.85 between the data sets for thick clouds. The average differences in the cloud pressure are also small, between 2 and 45 hPa, for the whole data set. For optically thin to medium thick clouds, the cloud pressure the distribution found by POLDER is very similar to that found by OMI using the O2 - O2 absorption. Somewhat larger differences are found for very thick clouds, and we hypothesise that the strong absorption in the oxygen A-band causes the POLDER instrument to retrieve lower pressures for those scenes

    Incorporating Inductances in Tissue-Scale Models of Cardiac Electrophysiology

    Get PDF
    In standard models of cardiac electrophysiology, including the bidomain and monodomain models, local perturbations can propagate at infinite speed. We address this unrealistic property by developing a hyperbolic bidomain model that is based on a generalization of Ohm's law with a Cattaneo-type model for the fluxes. Further, we obtain a hyperbolic monodomain model in the case that the intracellular and extracellular conductivity tensors have the same anisotropy ratio. In one spatial dimension, the hyperbolic monodomain model is equivalent to a cable model that includes axial inductances, and the relaxation times of the Cattaneo fluxes are strictly related to these inductances. A purely linear analysis shows that the inductances are negligible, but models of cardiac electrophysiology are highly nonlinear, and linear predictions may not capture the fully nonlinear dynamics. In fact, contrary to the linear analysis, we show that for simple nonlinear ionic models, an increase in conduction velocity is obtained for small and moderate values of the relaxation time. A similar behavior is also demonstrated with biophysically detailed ionic models. Using the Fenton-Karma model along with a low-order finite element spatial discretization, we numerically analyze differences between the standard monodomain model and the hyperbolic monodomain model. In a simple benchmark test, we show that the propagation of the action potential is strongly influenced by the alignment of the fibers with respect to the mesh in both the parabolic and hyperbolic models when using relatively coarse spatial discretizations. Accurate predictions of the conduction velocity require computational mesh spacings on the order of a single cardiac cell. We also compare the two formulations in the case of spiral break up and atrial fibrillation in an anatomically detailed model of the left atrium, and [...].Comment: 20 pages, 12 figure

    Potential of a cyclone prototype spacer to improve in vitro dry powder delivery

    Get PDF
    Copyright The Author(s) 2013. This article is published with open access at Springerlink.com. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are creditedPurpose: Low inspiratory force in patients with lung disease is associated with poor deagglomeration and high throat deposition when using dry powder inhalers (DPIs). The potential of two reverse flow cyclone prototypes as spacers for commercial carrierbased DPIs was investigated. Methods: Cyclohaler®, Accuhaler® and Easyhaler® were tested with and without the spacers between 30-60 Lmin-1. Deposition of particles in the next generation impactor and within the devices was determined by high performance liquid chromatography. Results: Reduced induction port deposition of the emitted particles from the cyclones was observed due to the high retention of the drug within the spacers (e.g. salbutamol sulphate (SS): 67.89 ± 6.51 % at 30 Lmin-1 in Cheng 1). Fine particle fractions of aerosol as emitted from the cyclones were substantially higher than the DPIs alone. Moreover, the aerodynamic diameters of particles emitted from the cyclones were halved compared to the DPIs alone (e.g. SS from the Cyclohaler® at 4 kPa: 1.08 ± 0.05 μm vs. 3.00 ± 0.12 μm, with and without Cheng 2, respectively) and unaltered with increased flow rates. Conclusion: This work has shown the potential of employing a cyclone spacer for commercial carrier-based DPIs to improve inhaled drug delivery.Peer reviewe

    Application of unsupervised chemometric analysis and self-organising feature map (SOFM) for the classification of lighter fuels

    Get PDF
    A variety of lighter fuel samples from different manufacturers (both unevaporated and evaporated) were analysed using conventional gas chromatography-mass spectrometry (GC-MS) analysis. In total 51 characteristic peaks were selected as variables and subjected to data pre-processing prior to subsequent analysis using unsupervised chemometric analysis (PCA and HCA) and a SOFM artificial neural network. The results obtained revealed that SOFM acted as a powerful means of evaluating and linking degraded ignitable liquid sample data to their parent unevaporated liquids

    Mitochondrial Mutations in Adenoid Cystic Carcinoma of the Salivary Glands

    Get PDF
    Background: The MitoChip v2.0 resequencing array is an array-based technique allowing for accurate and complete sequencing of the mitochondrial genome. No studies have investigated mitochondrial mutation in salivary gland adenoid cystic carcinomas. Methodology: The entire mitochondrial genome of 22 salivary gland adenoid cystic carcinomas (ACC) of salivary glands and matched leukocyte DNA was sequenced to determine the frequency and distribution of mitochondrial mutations in ACC tumors. Principal Findings: Seventeen of 22 ACCs (77%) carried mitochondrial mutations, ranging in number from 1 to 37 mutations. A disproportionate number of mutations occurred in the D-loop. Twelve of 17 tumors (70.6%) carried mutations resulting in amino acid changes of translated proteins. Nine of 17 tumors (52.9%) with a mutation carried an amino acid changing mutation in the nicotinamide adenine dinucleotide dehydrogenase (NADH) complex. Conclusions/Significance: Mitochondrial mutation is frequent in salivary ACCs. The high incidence of amino acid changing mutations implicates alterations in aerobic respiration in ACC carcinogenesis. D-loop mutations are of unclear significance

    An exploration of the family resilience needs of a rural community in South Africa: a sequential explanatory mixed methodological study design

    Get PDF
    The aim of the study is to identify and explore family resilience needs in a rural community in the West Coast region of South Africa. An explanatory mixed methodological sequential design was implemented. Firstly, Sixbey’s (2005) Family Resilience Assessment Scale, was employed to conduct the quantitative assessment via a door-to-door sample of convenience identified with the assistance of a local nongovernmental organisation. Of the 656 participants, 39.8% were male and 60.2% were female, with an average age of 37.90 years (standard deviation 13.92). Secondly, four focus groups involving 27 community participants provided qualitative data. Results from the quantitative assessment show that family connectedness and utilising social and economic resources were the lowest scoring, and belief systems the highest scoring, dimensions in family resilience. Based on the quantitative findings and the discussions, three thematic categories emerged: community and family challenges; community belief systems; and current family functioning and organisational patterns. A number of families and groups within the community were able to provide feedback, recommendations and work collaboratively in this study. This contributed to the argument we make for the transformative mixed methods paradigm that is discussed. This study provides further insight into the theory of family resilience.ISI & Scopu

    Fire performance of phase change material enhanced plasterboard

    Get PDF
    Sustainable construction materials are increasingly being used to reduce the carbon footprint of modern buildings. These materials have the potential to change the fire dynamics of compartments by altering the compartment energy balance however there is little quantitative understanding of how these materials behave in the event of a real fire. The changes in fire dynamics may be due to increased fuel load in a compartment, reduced time to failure or promotion of flame spread. The objective of this research is to quantify how Phase Change Materials (PCMs) perform in realistic fire scenarios. It was found that a plasterboard product containing microencapsulated PCMs will behave similarly to a charring solid and have the potential to contribute significant fuel to a compartment fire but that they maintain integrity for the duration of flaming period. The critical heat flux for this product was determined in the cone calorimeter to be 17.5 ± 2.5 kW m−2, the peak heat release rate and mass loss rate ranged from 60.2 kW m−2 to 107 kW m−2 and 1.88 g s−1 m−2 to 8.47 g s−1 m−2 respectively for exposures between 20 kW m−2 and 70 kW m−2. Sample orientation was found to increase the peak heat release rate by up to 25%, whilst having little to no effect on the mass loss rate. These parameters, in addition to the in-depth temperature evolution and ignition properties, can be used as design criteria for balancing energy savings with quantified fire performance
    • …
    corecore