860 research outputs found

    Differential genetic etiology of reading disability as a function of mathematics performance

    Full text link
    In order to assess the etiology of reading disability as a function of mathematics performance, data from 168 monozygotic (MZ) and 127 same-sex dizygotic (DZ) twin pairs in which at least one member of each pair was reading-disabled were subjected to quantitative genetic analyses. MZ and DZ concordance rates for reading disability were computed for different levels of mathematics performance, and reading performance data were fitted to an extension of the basic multiple regression model for the analysis of selected twin data. Results of these analyses suggest that genetic factors may be especially salient as a cause of reading disability in children with borderline deficits in mathematics performance: thus, mathematics performance may be a valid dimension for diagnosing subtypes of reading disability.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43574/1/11145_2004_Article_BF00395110.pd

    The impact of land cover change on surface energy and water balance in Mato Grosso, Brazil

    Get PDF
    The sensitivity of surface energy and water fluxes to recent land cover changes is simulated for a small region in northern Mato Grosso, Brazil. The Simple Biosphere Model (SiB2) is used, driven by biophysical parameters derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) at 250-m resolution, to compare the effects of different land conversion types. The mechanisms through which changes in vegetation alter surface fluxes of energy, momentum, water, and carbon are analyzed for both wet and dry seasons. It is found that morphological changes contribute to warming and drying of the atmosphere while physiological changes, particularly those associated with a plant’s photosynthetic pathway, counterbalance or exacerbate the warming depending on the type of conversion and the season. Furthermore, this study’s results indicate that initial clearing of evergreen and transition forest to bare ground increases canopy temperature by up to 1.7°C. For subsequent land use such as pasture or cropland, the largest effect is seen for the conversion of evergreen forest to C3 cropland during the wet season, with a 21% decrease of the latent heat flux and 0.4°C increase in canopy temperature. The secondary conversion of pasture to cropland resulted in slight warming and drying during the wet season driven mostly by the change in carbon pathway from C4 to C3. For all conversions types, the daily temperature range is amplified, suggesting that plants replacing forest clearing require more temperature tolerance than the trees they replace. The results illustrate that the effect of deforestation on climate depends not only on the overall extent of clearing but also on the subsequent land use type

    Comorbidity of Reading and Mathematics Disabilities

    Full text link
    Although children with learning disabilities frequently manifest comorbid reading and mathematics deficits, the cause of this comorbidity is unknown. To assess the extent to which comorbidity between reading and mathematics deficits is due to genetic and environmental influences, we conducted a twin study of reading and mathematics performance. Data from 148 identical and 111 fraternal twin pairs in which at least one member of the pair had a reading disability were subjected to a cross-concordance analysis and also fitted to a bivariate extension of the basic multiple regression model for the analysis of selected twin data. Results of these analyses suggest that genetic and shared-environmental influences both contribute to the observed covariance between reading and mathematics deficits.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68572/2/10.1177_002221949502800204.pd

    Predicting Fire Season Severity in South America Using Sea Surface Temperature Anomalies

    Get PDF
    Fires in South America cause forest degradation and contribute to carbon emissions associated with land use change. Here we investigated the relationship between year-to-year changes in satellite-derived estimates of fire activity in South America and sea surface temperature (SST) anomalies. We found that the Oceanic Ni o Index (ONI) was correlated with interannual fire activity in the eastern Amazon whereas the Atlantic Multidecadal Oscillation (AMO) index was more closely linked with fires in the southern and southwestern Amazon. Combining these two climate indices, we developed an empirical model that predicted regional annual fire season severity (FSS) with 3-5 month lead times. Our approach provides the foundation for an early warning system for forecasting the vulnerability of Amazon forests to fires, thus enabling more effective management with benefits for mitigation of greenhouse gas and air pollutant emissions

    The albino locus and locomotor behavior in the mouse: Studies using extended test intervals

    Full text link
    The influence of albinism upon initial activity in novel surroundings was examined using coisogenic and congenic lines of mice. In comparison with those of previous studies, an extended test interval was used, and this modification produced significant main and interaction effects of the c locus upon activity for both lines. The present findings confirm and extend those of previous studies upon the depressant effects of albinism based upon coisogenic lines, and extend the findings to congenic lines as well.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44104/1/10519_2005_Article_BF01065627.pd

    Fire-Related Carbon Emissions from Land Use Transitions in Southern Amazonia

    Get PDF
    Various land-use transitions in the tropics contribute to atmospheric carbon emissions, including forest conversion for small-scale farming, cattle ranching, and production of commodities such as soya and palm oil. These transitions involve fire as an effective and inexpensive means for clearing. We applied the DECAF (DEforestation CArbon Fluxes) model to Mato Grosso, Brazil to estimate fire emissions from various land-use transitions during 2001-2005. Fires associated with deforestation contributed 67 Tg C/yr (17 and 50 Tg C/yr from conversion to cropland and pasture, respectively), while conversion of savannas and existing cattle pasture to cropland contributed 17 Tg C/yr and pasture maintenance fires 6 Tg C/yr. Large clearings (>100 ha/yr) contributed 67% of emissions but comprised only 10% of deforestation events. From a policy perspective, results imply that intensification of agricultural production on already-cleared land and policies to discourage large clearings would reduce the major sources of emissions from fires in this region. Copyright 2008 by the American Geophysical Union

    Daily and 3-hourly variability in global fire emissions and consequences for atmospheric model predictions of carbon monoxide

    Get PDF
    Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic-and diurnal-scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3). We disaggregated monthly GFED3 emissions during 2003-2009 to a daily time step using Moderate Resolution Imaging Spectroradiometer (MODIS)-derived measurements of active fires from Terra and Aqua satellites. In parallel, mean diurnal cycles were constructed from Geostationary Operational Environmental Satellite (GOES) Wildfire Automated Biomass Burning Algorithm (WF_ABBA) active fire observations. Daily variability in fires varied considerably across different biomes, with short but intense periods of daily emissions in boreal ecosystems and lower intensity (but more continuous) periods of burning in savannas. These patterns were consistent with earlier field and modeling work characterizing fire behavior dynamics in different ecosystems. On diurnal timescales, our analysis of the GOES WF_ABBA active fires indicated that fires in savannas, grasslands, and croplands occurred earlier in the day as compared to fires in nearby forests. Comparison with Total Carbon Column Observing Network (TCCON) and Measurements of Pollution in the Troposphere (MOPITT) column CO observations provided evidence that including daily variability in emissions moderately improved atmospheric model simulations, particularly during the fire season and near regions with high levels of biomass burning. The high temporal resolution estimates of fire emissions developed here may ultimately reduce uncertainties related to fire contributions to atmospheric trace gases and aerosols. Important future directions include reconciling top-down and bottom up estimates of fire radiative power and integrating burned area and active fire time series from multiple satellite sensors to improve daily emissions estimates

    Daily and 3-hourly variability in global fire emissions and consequences for atmospheric model predictions of carbon monoxide

    Get PDF
    Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic-and diurnal-scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3). We disaggregated monthly GFED3 emissions during 2003-2009 to a daily time step using Moderate Resolution Imaging Spectroradiometer (MODIS)-derived measurements of active fires from Terra and Aqua satellites. In parallel, mean diurnal cycles were constructed from Geostationary Operational Environmental Satellite (GOES) Wildfire Automated Biomass Burning Algorithm (WF_ABBA) active fire observations. Daily variability in fires varied considerably across different biomes, with short but intense periods of daily emissions in boreal ecosystems and lower intensity (but more continuous) periods of burning in savannas. These patterns were consistent with earlier field and modeling work characterizing fire behavior dynamics in different ecosystems. On diurnal timescales, our analysis of the GOES WF_ABBA active fires indicated that fires in savannas, grasslands, and croplands occurred earlier in the day as compared to fires in nearby forests. Comparison with Total Carbon Column Observing Network (TCCON) and Measurements of Pollution in the Troposphere (MOPITT) column CO observations provided evidence that including daily variability in emissions moderately improved atmospheric model simulations, particularly during the fire season and near regions with high levels of biomass burning. The high temporal resolution estimates of fire emissions developed here may ultimately reduce uncertainties related to fire contributions to atmospheric trace gases and aerosols. Important future directions include reconciling top-down and bottom up estimates of fire radiative power and integrating burned area and active fire time series from multiple satellite sensors to improve daily emissions estimates

    Framing sustainability in a telecoupled world.

    Get PDF
    Interactions between distant places are increasingly widespread and influential, often leading to unexpected outcomes with profound implications for sustainability. Numerous sustainability studies have been conducted within a particular place with little attention to the impacts of distant interactions on sustainability in multiple places. although distant forces have been studied, they are usually treated as exogenous variables and feedbacks have rarely been considered. To understand and integrate various distant interactions better, we propose an integrated framework based on telecoupling, an umbrella concept that refers to socioeconomic and environmental interactions over distances. The concept of telecoupling is a logical extension of research on coupled human and natural systems, in which interactions occur within particular geographic locations. The telecoupling framework contains five major interrelated components, i.e., coupled human and natural systems, flows, agents, causes, and effects. We illustrate the framework using two examples of distant interactions associated with trade of agricultural commodities and invasive species, highlight the implications of the framework, and discuss research needs and approaches to move research on telecouplings forward. The framework can help to analyze system components and their interrelationships, identify research gaps, detect hidden costs and untapped benefits, provide a useful means to incorporate feedbacks as well as trade-offs and synergies across multiple systems (sending, receiving, and spillover systems), and improve the understanding of distant interactions and the effectiveness of policies for socioeconomic and environmental sustainability from local to global levels
    • 

    corecore