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One-sentence summary 

We show that SST anomalies can predict annual fire season severity in South America, 

with Oceanic Niño Index predicting severity in the eastern Amazon and Atlantic Multidecadal 

Oscillation index in southern and southwestern Amazon, enabling forecasts with 3 to 5 month 

lead times.     
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Abstract 

Fires in South America cause forest degradation and contribute to carbon emissions 

associated with land use change. Here we investigated the relationship between year-to-year 

changes in satellite-derived estimates of fire activity in South America and sea surface 

temperature (SST) anomalies. We found that the Oceanic Niño Index (ONI) was correlated with 

interannual fire activity in the eastern Amazon whereas the Atlantic Multidecadal Oscillation 

(AMO) index was more closely linked with fires in the southern and southwestern Amazon. 

Combining these two climate indices, we developed an empirical model that predicted regional 

annual fire season severity (FSS) with 3-5 month lead times. Our approach provides the 

foundation for an early warning system for forecasting the vulnerability of Amazon forests to 

fires, thus enabling more effective management with benefits for mitigation of greenhouse gas 

and air pollutant emissions.  
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Deforestation and forest degradation in South America contribute to anthropogenic 

carbon (C) emissions and global climate change (1-4). The net C flux from deforestation and 

regrowth throughout Latin America (5) accounted for nearly a quarter of the global C emissions 

from land use and land cover change (4) in the 1990s. About half of the C emissions from 

deforestation and forest degradation are associated with fires (4). Fire is widely used as an 

effective and inexpensive means to remove coarse woody debris during the conversion of forests 

to croplands and pastures, and to limit woody encroachment in existing pastures (6-7). Although 

deforestation rates in Amazonia have declined over the last five years (8-9), trends in fires and 

burned area have not declined by the same amount, possibly as a result of continued burning 

following initial forest clearing and escaped fires in intact forests from nearby agricultural 

activities (10). Notably, extensive burning in the Brazilian states of Mato Grosso and Pará during 

2007 led to the highest fire emissions of any year during 1997-2009 (11), highlighting the need 

to target forest degradation in addition to deforestation for sustained reductions in land use 

emissions from the region. Projected decreases in Amazon rainfall during the 21st century (12-

13) may increase the risk of forest fires (14-15), with the potential for larger carbon losses and a 

positive feedback to climate change (16). In this context, more effective ways to manage fires are 

needed for the design of successful climate mitigation and adaptation strategies. Advance 

information about the likelihood of fires in the dry season allows time to explore and implement 

management options such as allocation of fire-fighting resources or targeted burning restrictions.   

Here we developed a predictive relationship between sea surface temperature (SST) 

anomalies and annual fire season severity (FSS) in South America that enables forecasts with 3-5 

month lead times. A recent study (17) has shown that the anomalous local fire activity in western 

Amazon can be forecast using SSTs from the tropical North Atlantic. Our approach builds on 
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this work by combining information from both the Pacific and Atlantic and by allowing for 

spatially varying contributions from these two different drivers. With our model, we were able to 

successfully predict interannual variability in FSS for several regions. Examination of the 

temporal and spatial variability of the model parameters and lead times provided new 

information about the underlying mechanisms enabling these predictions.  

High fire years in South America are often associated with an extended dry season and 

anomalously low levels of precipitation (18-19). Previous studies (18, 20-24) have shown that 

precipitation variability in the Amazon is regulated by SSTs in both the Pacific and Atlantic. 

During the warm phase of El Niño-Southern Oscillation (ENSO), warming of the tropical eastern 

Pacific surface ocean increases upward atmospheric motion in the region and alters the east-west 

Walker circulation. As a consequence, precipitation is suppressed over the central and eastern 

Amazon (21-22). Atlantic SSTs also contribute to precipitation variability within the Amazon, 

with the North Atlantic controls stronger than those from the South Atlantic during the dry 

season and for the annual mean (24). Anomalously warm SSTs over the tropical North Atlantic 

are believed to cause a northward displacement of Intertropical Convergence Zone (ITCZ), 

decreasing convection and precipitation during the dry season in the western and southwestern 

Amazon (25). Thus, the most severe droughts observed in the Amazon over the last three 

decades have occurred when the tropical eastern Pacific and North Atlantic were anomalously 

warm (18-19, 23, 25). 

Fire season severity, here defined as the sum of satellite-based active fire counts (FC) in a 

9-month period centered at the peak fire month, depends on multiple parameters that influence 

fuel moisture levels and fire activity in addition to precipitation, including vapor pressure 

deficits, wind speeds, ignition sources and the intensity and duration of dry season. As a result, 
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the relationship between FSS and SSTs may not be the same as the relationships between 

precipitation and SSTs described above.  

To develop our empirical model of FSS we used 2001-2009 FC detected by the Moderate 

Resolution Imaging Spectroradiometer (MODIS) on board NASA’s Terra satellite (26) along 

with two climate indices (CIs) constructed from SST anomalies in the eastern tropical Pacific 

and North Atlantic. The Oceanic Niño Index (ONI) is a 3-month mean SST anomaly in the Niño 

3.4 region (5°N-5°S, 120°-170°W) of the Pacific (27). The Atlantic Multidecadal Oscillation 

index (AMO) represents a similar 3-month mean for the North Atlantic (0°-70°N) (28). To 

identify the optimal lead times for using ONI and AMO to predict fires, we separately calculated 

the correlation between annual sum of FC during the fire season and each of the two CIs for 

different months prior to the peak fire month (-1~10 month lead times; defined relative to the end 

of the CI’s 3-month SST anomaly averaging interval) in states of Brazil and Bolivia where 

biomass burning is high (Table 1, Figure S1) and also for 5°×5° regions across the continent 

(Figure 1).  

We defined our empirical predictive model as a linear combination of the two CIs 

sampled during these months of maximum correlation:   

!""#$%&'()%&*+, -. / 0*+. 1 23456*+.7 8 9*+. 1 :;25<*+.7 8 =*+.         (1) 

where FSSpredicted is the predicted FSS in region x and year t, a is a spatially varying coefficient 

applied to ONI, b is a spatially varying coefficient applied to AMO, and c is a constant. 

Coefficients a and b represent the sensitivities of FSS in each region to ONI and AMO, 

individually. We obtained a, b and c by fitting the observed time series of annual FSS from Terra 

MODIS during 2001-2009 (9 years; Figure 1c) with ONI and AMO during the same period. ONI 
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and AMO were sampled during months i and j, respectively, in each region based on the 

maximum correlation (either positive or negative) observed for the individual climate indices. 

The lead times corresponding to i and j varied spatially and were computed relative to the peak 

fire month in each region (Figure 1a, 1b and S2) (Materials and methods are available as 

supporting material on Science Online.). 

Fires in the eastern Amazon were more sensitive to ONI while AMO had the largest 

impacts on FSS in the southern and southwestern Amazon (Figure 1). The AMO influence on 

fires had distinctive north-south pattern, with correlations switching from strongly positive to 

strongly negative north of the equator (Figure S2). AMO had a stronger positive correlation with 

FSS in Rondonia, Pará, El Beni, Amazonas, and Acre, whereas ONI was more closely linked 

with FSS in Mato Grosso (Table 1, Figure S3). These spatial patterns were broadly consistent 

with observed relationships between Pacific and Atlantic SST anomalies and precipitation 

variability within the Amazon (24).  

Lead times for the two climate indices relative to the peak fire month were relatively 

consistent across the different states we targeted in our analysis, ranging between 4-6 months for 

AMO and 3-7 months for ONI for states other than Amazonas (Table 1). Near or at the timing of 

peak fire month, the relationship between the two climate indices and FSS was considerably 

weaker (Figure S1). By combining information from both AMO and ONI in our empirical 

regression model (Equation 1), we were able to explain some of the interannual variability in 

FSS across South America during 2001-2009 from Terra MODIS (Figure 1d). Notably, high fire 

years in 2004, 2005, and 2007 had the highest values of AMO during January-March (the period 

of optimal lead times) whereas low fire years in 2008 and 2009 had the lowest values of AMO 

(Figure S4).  
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To verify the model, we compared the model predictions with Terra MODIS FSS from 

2010 (this year was not used to develop the model), FSS derived from three other satellites, and 

carbon emissions from the Global Fire Emissions Database version 3 (GFED3) that integrates 

500m burned area and active fires from multiple sources during 1997-2009 (Figure 2). The 

model predicted a considerable increase in fires in all regions in 2010 (relative to the 2008 and 

2009 fire seasons) that was consistent with all of the available satellite observations (Figure 2). 

Examining the 2010 predictions in more detail for MODIS Terra, the model generated 

reasonably accurate predictions for Acre and Pará, overestimated fires in Rondonia, Amazonas, 

and Mato Grosso, and underestimated fires in El Beni (Figure S5). Predictions from the model in 

the pre-MODIS era compared to FSS from the Visible and Infrared Scanner (VIRS) on board 

NASA’s Tropical Rainfall Measuring Mission (TRMM) (29), the Advanced Along Track 

Scanning Radiometer (ATSR) World Fire Atlas (algorithm 1) (30), and GFED3 (11) were most 

robust for states of Rondonia and Mato Grosso (Figures 2, S5, S6 and S7).  

The spatial patterns of high and low severity fire seasons across South America varied 

considerably and were partially captured by the model. In 2010, for example, the model 

predicted anomalously high levels of fire activity in both the southeastern and southwestern part 

of the Amazon basin, consistent with the observed pattern from MODIS (Figure 3). In 2007, in 

contrast, both model estimates and MODIS observations indicated anomalously high fires were 

distributed primarily in the southeastern part of the basin.  

Many different types of fire occur in tropical forest and savanna biomes, including those 

associated with deforestation for agricultural expansion, forest fires that may have escaped from 

different agricultural activities, savanna fires that are associated with pasture maintenance, and 

agricultural waste burning. To examine the potential of developing separate forecasting models 
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for these different fire types, we conducted two separate analyses. First, within each state we 

partitioned fires into forest and non-forest components using MODIS-IGBP vegetation classes, 

and then separately developed empirical models for these two different classes. Second, we 

investigated the relationship between understory forest fires in Mato Grosso (31) and ONI and 

AMO climate indices. Models derived for the forest component of each state had similar levels 

of performance (and lead times) compared to non-forest areas (Table S1 and Figure S1), 

indicating that our approach may be applicable for many of the fires that contribute to forest 

degradation. For understory forest fires in Mato Grosso during 1999-2008, we found a 

significant non-linear relationship with AMO for 9-12 month lead times (Figure S8). ONI, in 

contrast, appeared to have limited use as forecasting variable.  

What are the mechanisms that enable fire season forecasts from SSTs with lead times of 

~3-5 months for important biomass burning regions in southern hemisphere South America?  

These time scales are considerably longer than expected for direct atmospheric circulation 

adjustments to SST anomalies. Further, although SST anomalies vary relatively slowly (and 

often have relatively long autocorrelation timescales), it is clear from Figure S1 that the 

relationship between SST anomalies and the annual sum of active fire detections becomes 

weaker with shorter lead times. As an example, 2006 was a relatively low fire year across much 

of southern hemisphere South America, even though both AMO and ONI were exceptionally 

high at the peak of the fire season (Figure S4).  

We hypothesize that precipitation levels during the preceding wet season and during the 

onset of the dry season in forests of southern hemisphere South America act as a key regulator of 

drought intensity during the subsequent dry season. Evidence supporting this hypothesis comes 

from analysis of the seasonal distribution of active fires during high and low fire years (Figure 
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S9). For satellite observations available over the last decade, the midpoint of the fire season 

occurred earlier during high fire years (Figure S10), likely as a consequence of reduced 

precipitation during preceding months. This finding also is consistent with the observation that 

precipitation anomalies 1-4 months before the peak fire month (corresponding to the dry season 

and wet-to-dry transition season) were more negatively correlated with the annual sum of FC 

than precipitation anomalies during the peak fire month (Figure S11). The correlation between 

AMO and precipitation during the wet-to-dry transition period and early dry season was 

particularly strong for southwestern Amazonia (Figure S12). Patterns of interannual variability in 

precipitation also indicated that climate at the onset of the dry season was an important 

controller– standard deviations and coefficients of variation were higher during the wet-to-dry 

transition period than for the subsequent dry-to-wet transition (Figure S13).  

One possible contributing factor for the time delays between SST anomalies and dry 

season intensity may involve recharge of soil moisture in forests during the wet season. High 

SST anomalies in the North Atlantic during November-March limit the southward movement of 

the ITCZ and thus recharge of soil moisture levels in forest ecosystems across the southern 

Amazon during these months (Figure S12). As a consequence, transpiration rates by trees may be 

reduced below average during the following dry season with impacts for both surface humidity 

and precipitation (3). The time scales for these forest-mediated interactions are consistent with 

earlier work documenting deep rooting systems (32) and hydraulic redistribution (33) required to 

maintain high levels of evapotranspiration during the dry season (34). Further research is needed 

to improve our understanding of the underlying mechanisms, including the pathways for the 

atmospheric teleconnections, the strength of transpiration-mediated feedbacks, and the relative 
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importance of precipitation, temperature, humidity, wind speed, and radiation in regulating fire 

behavior during the dry season.  

Our results demonstrate the potential use of SST anomalies for forecasting of fire season 

severity. This information may be of use in several different ways to inform mitigation and 

adaptation strategies (see text S2 in SOM). The relationship between SSTs and fires documented 

here also provides a new conceptual framework for evaluating future changes in the fire regime 

across South America. Changes in SSTs in tropical Pacific and Atlantic are driven by both 

natural oscillations and long term trends caused by global climate change. The AMO has a 

periodicity of ~76 years (35). Given that the most recent warm phase started in the mid-1990s, 

the warm phase is likely to continue for several more decades, potentially sustaining high levels 

of fire risk in the southern Amazon. SSTs also respond to forcing from greenhouse gas 

concentrations and aerosols. If aerosol emissions continue to decrease in the industrialized north, 

North Atlantic region will warm more rapidly than the South Atlantic (e.g., large AMO) in the 

future (25), leading to higher probability of severe fire seasons. Severe droughts in South 

America also may occur more frequently during the latter half of the 21st century as a result of 

climate change (12, 36-37), further increasing the need to develop forecasting approaches for fire 

management.  
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Figure captions 

Figure 1. (a) Maximum positive correlation between ONI and Terra MODIS FSS derived from 

2001-2009 data. (b) Maximum positive correlation between AMO and FSS for the same period. 

(c) Mean FSS observed by Terra MODIS during 2001-2009. (d) Correlation between predicted 

FSS from the empirical model (equation 1) and observed FSS by Terra MODIS. The months at 

which ONI or AMO had largest positive correlation with FSS are provided for each 5°×5° grid 

cell in panels a and b. Also shown (in the parentheses) are the associated lead times relative to 

the peak fire month. The months (and the associated lead time) at which the empirical model can 

be used for FSS prediction are shown in panel d. 

Figure 2. Interannual variability of FSS from different satellites (MOD: Terra MODIS for 2001-

2010; MYD: Aqua MODIS for 2003-2010; VIRS: TRMM VIRS for 1998-2009; ATSR: ATSR 

World Fire Atlas algorithm 1 for 1997-2010) and carbon emissions from GFED3 (1997-2009) 

compared to predictions from the empirical model (equation 1). Note these datasets of FSS are 

derived from satellite spectroradiometer observations of active fire counts (FC) with widely 

varying detector sensitivities and spatial resolutions, and therefore they are scaled to allow for 

more direct comparisons of the interannual variability. The GFED3 estimates for Amazonas 

were not scaled. Some of the variability in the observations not captured by our predictive model 

probably can be attributed to directional changes in land use within each region (see SOM text 

S3). 

Figure 3.  Annual ONI and AMO anomalies for 2001-2010 averaged during February-April (the 

months at which both ONI and AMO had large positive correlations with FSS in high fire states 

of southern hemisphere South America). The annual FSS anomalies observed by Terra MODIS 
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and derived from this study were shown for representative high (2005, 2007, 2010) and low 

(2001, 2008, 2009) fire years. All anomaly values are relative to the 2001-2009 means. 
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Tables 

Table 1. The empirical fire model and validation statistics in different high fire states in South 

America. 

State Peak 
fire 

month 

Climate index – annual FSS 
relationship1 

Empirical model2 Validation3 

lead time 
(months) 

r lead 
time 

model parameters r r 

ONI AMO ONI AMO  a b c MOD MYD VIRS ATSR GFED3 

Amazonas Sep 10 4 0.30 0.73 4 0.88 53.8 14.0 0.74 0.70 0.64 0.15 0.53 

Pará Aug 3 5 0.59 0.79 3 47.2 292.9 146.4 0.84 0.82 0.76 0.57 0.52 

Rondonia Sep 7 5 0.62 0.88 5 87.6 1507 334.1 0.73 0.45 0.91 0.58 0.78 

Mato Grosso Sep 5 6 0.82 0.73 5 307.1 1101 516.9 0.75 0.75 0.74 0.69 0.74 

El Beni Sep 3 5 0.43 0.75 3 140.5 974.8 335.4 0.82 0.89 0.42 0.49 0.41 

Acre Sep 7 4 0.43 0.73 4 6.68 185.3 43.9 0.82 0.85 0.72 0.52 0.73 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1!Linear!regressions!between!FSS!(the!annual!sum!of!active!fire!counts!during!the!fire!season)!recorded!by!Terra!MODIS!(MOD)!
and!climate!indices!(CI:!either!ONI!or!AMO)!with!different!lead!times!(number!of!months!prior!to!the!peak!fire!month)!were!
performed!for!2001"2009.!The!maximum!positive!correlations!(r)!and!the!associated!lead!times!(with!a!cutoff!of!at!least!3!
months)!are!shown.!Lead!times!are!computed!as!the!difference!between!the!month!of!climate!index!and!the!peak!fire!month.!
Since!the!climate!index!is!a!3!month!mean!SST!anomaly,!we!report!the!lead!time!relative!to!the!end!of!the!3"month!CI!interval!
(not!the!center!month)!to!give!a!more!accurate!description!of!the!amount!of!time!potentially!available!to!develop!a!fire!season!
severity!forecast.!
2!ONI!and!AMO!values!(2001"2009)!that!have!maximum!correlations!with!FSS!were!used!to!derive!the!empirical!model!using!
two"variable!linear!regressions.!!a,!b,!and!c!are!coefficients!of!the!formula!(equation!1).!The!lead!time!describes!the!number!of!
months!before!peak!fire!season!for!which!the!empirical!model!can!be!used!for!FSS!prediction!(and!is!the!smaller!of!the!two!CI!
lead!times).!r!is!the!correlation!between!predicted!and!MODIS!observed!FSS!for!2001"2009.!
3!We!validated!the!empirical!model!by!comparing!the!predicted!FSS!with!observed!FSS!from!MODIS!on!board!Aqua!satellite!
(MYD,!2003"2010),!Visible!and!Infrared!Scanner!on!board!Tropical!Rainfall!Measuring!Mission!(TRMM)!satellite!(VIRS,!1998"
2009),!European!Space!Agency!(ESA)!Advanced!Along!Track!Scanning!Radiometer!World!Fire!Atlas!(ATSR,!1997"2010,!algorithm!
1),!and!fire!emissions!from!Global!Fire!Emission!Database!version!3!(GFED3,!1997"2009).!
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(Figure S14) Correlations between observed FSS and FSS predicted using SST anomaly data 

with larger lead times. 

(References)   
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Text S1. Data and Method 

The derivation of coefficients for the fire season severity (FSS) empirical model 
(Equation 1) was based on active fire counts (FC) detected by the MODIS sensor on board the 
Terra Satellite during 2001-2009. Specifically, we used MODIS collection 5 global monthly fire 
location product (MCD14ML, available online at http://modis-fire.umd.edu/AF_getdata.html). 
We sampled the geographic coordinates of individual fire pixels (at a 1×1 km spatial resolution) 
that had a confidence level greater than 30%, and calculated the monthly FC within each 0.5° 
pixel after applying a cloud fraction correction. Persistent hot spots from MODIS observations 
(1) and gas flare pixels in NOAA Global Gas Flare Estimates (2) were excluded because the 
burning in these pixels were mainly associated with petroleum production rather than vegetation 
fires. We then calculated the monthly FC for each 5°×5° grid cell and for 6 states (Amazonas, 
Pará, Rondonia, Mato Grosso, and Acre in Brazil and El Beni in Bolivia) that had high levels of 
deforestation and biomass burning fire emissions in recent years. The sum of FC during the fire 
season (defined as the 9-month period centered at the peak fire month) was recorded as the 
annual FSS for each region (either for each 5°×5° grid cell or for each state).  

We obtained the Oceanic Niño Index (ONI) time series from the NOAA National 
Weather Service Climate Prediction Center (http://www.cpc.noaa.gov/) and the Atlantic Multi-
decadal Oscillation (AMO) index time series from the NOAA Earth System Research Laboratory 
website (http://www.esrl.noaa.gov/).  

We first performed linear regressions between FSS and the two climate indices (CIs, 
either ONI or AMO) for different lead times before the peak fire month. Since the CI is a 3 
month mean SST anomaly, we report the lead time relative to the end of the 3-month CI interval 
(not the center month) to give a more accurate description of the amount of time potentially 
available to develop a fire season severity forecast. For most regions, 9 years of data (2001-
2009) were used for the regression. For some regions where the peak fire month was during or 
before April, only 8 years of data (2002-2009) were used. These regions occurred mostly north 
of the equator, for example in Venezuela and Columbia. For each region, the month for which 
the CI had maximum positive or negative correlations with FSS was recorded (individually for 
ONI and AMO). If the maximum positive correlation was higher than the absolute value of the 
maximum negative correlation, we used the CI values for the month with maximum positive 
correlation. To predict FSS at or before the beginning of the fire season, we established a cutoff 
(minimum) lead time of 3 months. We then used the ONI and AMO values (sampled during the 
months when the correlation between the CI and FSS was at a maximum) to derive the 
coefficients (a, b, and c) for each region. This was done by performing a two-variable linear 
regression following the form of Equation (1) in the main text.  

Data used to validate the empirical model include active fire counts observed by the Terra 
MODIS (MOD) in 2010, active fire counts observed by the MODIS on board the Aqua satellite 
(MYD) for 2003-2010, active fire counts observed by Tropical Rainfall Measuring Mission 
(TRMM) Visible and Infrared Scanner (VIR) for 1998-2009, active fire counts from European 
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Space Agency (ESA) Advanced Along Track Scanning Radiometer World Fire Atlas (ATSR, 
algorithm1) for 1997-2010, and fire emissions for 1997-2009 from the Global Fire Emission 
Database version 3 (GFED3). MODIS-IGBP vegetation classes from the MODIS 500m land 
cover product (MOD12Q1, collection 4, for the year 2001-2004) were used to partition the forest 
and non-forest regions of each state. We separately calculated FSS and developed empirical 
models for these two different classes. 

Using the precipitation rate (PPT) from TRMM 3B43 dataset (available online at 
http://disc.sci.gsfc.nasa.gov/index.shtml), we performed linear regressions between FSS and PPT 
with variable lead times. The results for the 6 states with high levels of biomass burning are 
shown in Figure S11. We also explored the correlations between TRMM PPT for 4 seasonal 
periods and the CI values sampled at different months (see Figure S12). 

 

Text S2. Use of fire season severity in mitigation and adaptation strategies 

Using the method given in this paper to forecast FSS will be of use in several different 
ways to inform mitigation and adaptation strategies. For example, investment in fire management 
could be strengthened in places vulnerable to fire damage before the onset of high severity fire 
seasons– with lead times of 3-5 months enabling investment in personnel and infrastructure. 
Even larger lead times may be possible in some regions with only slightly reduced forecasting 
skill (Figure S14). Given the potential damage caused by fires that escape from pasture 
maintenance and land clearing activities into nearby forests, permitting systems for these forms 
of land management could be modified to reduce risks, on a state by state basis. Forecasts may 
also be useful for assessing the success of fire management, including for example using the 
predicted versus actual fire season severity, to evaluate avoided carbon emissions. One important 
use of these forecasts may involve mitigating public health impacts from exposure to degraded 
air quality during severe fire seasons (3), since fire emissions can directly contribute to the global 
burden of disease due to outdoor air pollution (4). Fine particulate matter and ozone emissions 
from fires are of special concern for patients with susceptibilities to cardiovascular or respiratory 
disease (5-6).   

 

Text S3. Methodological uncertainties 

The relationship between fire activity and precipitation can be highly non-linear (7). Fuel 
moisture control on fire season severity varies in different ecosystems, and often decreases in 
savanna and grassland ecosystems where fire spread rates may be limited by the availability of 
fine fuels (8). Additional factors, including economic drivers (9) and policy decisions regarding 
land management (10) influence the fire regime, and likely contribute to some of the variability 
that we cannot explain with the simple empirical model described in this paper. For example, our 
method overestimated the fire season intensity in 2007 and 2010 over a 5×5 grid cell (60°W-
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55°W, 15°S-10°S) in western Mato Grosso (Figure 3), where very high levels of deforestation 
occurred during 2002-2005 (11).  
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Table S1. The empirical fire model and validation statistics for forest (F) and non-forest (NF) 
regions in different high fire states in South America.!Non-forest fractions in Amazonas and 
Acre were smaller than 10% and so we did not partition the all-vegetation model (Table 1) into F 
and NF components for these states. 

State Biome CI-FSS correlations Empirical model Validation 
lead time r lead 

time 
model parameters r r 

ONI AMO ONI AMO a b c MOD MYD VIRS ATSR GFED3 
Para F 3 8 0.54 0.81 3 41.1 275.8 115.3 0.86 0.94 0.77 0.39 0.46 

NF 4 5 0.47 0.53 4 56.6 363.9 235.0 0.60 0.88 0.75 0.47 0.57 
Rondonia F 7 6 0.59 0.89 6 93.2 1893 374.7 0.93 0.47 0.88 0.54 0.69 

NF 5 5 0.76 0.79 5 124.0 625.3 232.5 0.93 0.51 0.81 0.61 0.87 
Mato 
Grosso 

F 5 4 0.84 0.76 4 456.7 1708 684.2 0.94 0.65 0.73 0.59 0.62 
NF 5 6 0.64 0.54 5 162.7 514.0 355.4 0.70 0.86 0.61 0.69 0.79 

El Beni F 3 6 0.09 0.73 3 -23.0 744.3 175.1 0.74 0.62 0.58 0.45 0.54 
NF 3 5 0.56 0.72 3 275.7 1268 488.5 0.87 0.92 0.36 0.46 0.39 
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Figure S1. Correlation coefficients between FSS and CIs (either ONI or AMO) for different lead 
times (number of months prior to the peak fire month). The months with highest positive 
correlation (with a cutoff of at least 3 month lead time) are highlighted with filled circles. The 
correlation coefficients are separately shown for all, forest, and non-forest vegetation classes in 6 
high-fire states in South America. Non-forest fractions in Amazonas and Acre were smaller than 
10%, so the correlations in these two states are shown only for the all-vegetation class. The 
dashed lines represent levels of p = 0.02 and p = 0.05 for a two-tailed test. 
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Figure S2. Same as Figure 1a and 1b, but for the maximum negative correlations between FSS 

and the two CIs. 

 

 

 

 

 

 

 

  

(a) max negative corr. between ONI and FSS (b) max negative corr. between AMO and FSS
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Figure S3. Scatter plots of FSS versus ONI or AMO for months with highest positive 
correlation. The last digit of each year is shown within each circle (2001-2009). 
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Figure S4. Time series (2001-2009) of monthly ONI and AMO, along with total FC in South 
America and in 6 states of Brazil and Bolivia. The black dots indicate the month at which ONI or 
AMO had largest positive correlation with the sum of annual FC during the fire season in Mato 
Grosso.  
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Figure S5. Scatter plots of predicted annual MOD FSS (derived from Terra MODIS FC data for 
2001-2009) versus FSS detected by satellites (MOD: Terra MODIS for 2001-2010; MYD: Aqua 
MODIS for 2003-2010; VIRS: TRMM VIRS for 1998-2009; ATSR: ATSR World Fire Atlas 
algorithm 1 for 1997-2010) and fire emissions from GFED3 (1997-2009). Open circles represent 
data during 2001-2009 (the period used to derive the empirical model) and closed circles 
represent data for other years that are (2010 for MOD and MYD; 1998-2000 for VIRS; 1997-
2000 and 2010 for ATSR, and 1997-2000 for GFED3). 
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Figure S6. (a) Fire C emissions (averaged over 1997-2009) from GFED version 3; (b) 
correlation between predicted FSS and GFED3 emissions. 
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 Figure S7. Maps of correlations between predicted FSS (using either combined method as given 
in Equation 1, or methods based on single variable regressions between FSS and ONI/AMO) and 
FSS detected by satellites (MOD for 2001-2010; MYD for 2003-2010; VIRS for 1998-2009; 
ATSR for 1997-2010) and fire emissions from GFED3 (1997-2009). 
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Figure S8. Correlation between CIs and the burned area of understory fires in Mato Grosso 
during 1999-2008 with different lead times (lt). The last two digits of the years are shown in 
circles. The annual extent of understory forest fire damages was estimated from 2000-2010 
MODIS data, using methods described in (12). An exponential fit line between AMO and burned 
area is shown for each panel with lt between 9 and 12 months. The last two digits of the years are 
shown within the circles. 
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Figure S9. (a) Monthly distributions of Terra (MOD) FC for each year between 2001 and 2009, 
and the 2001-2009 mean. (b) Normalized (monthly FC divided by annual FC) monthly 
distributions of FC. 
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Figure S10. The midpoint of the fire season shown as a function of annual FC observed by Terra 
MODIS (MOD, 2001-2010), Aqua MODIS (MYD, 2003-2010), TRMM VIRS (1998-2009), and 
ATSR World Fire Atlas algorithm 1 (1997-2010). The midpoint of the fire season was estimated 
as the center point of a FC-weighted temporal distribution using all active fires observed by 
Terra MODIS during each year (March-March). The last two digits of the years are shown in 
circles.  
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Figure S11. Correlation coefficients (r) from linear regressions between FSS and the mean 
precipitation rate during 3-month moving windows with variable lead times (months before the 
peak fire month). Dashed lines indicate levels of p = 0.02 and p = 0.05 for the two-tail 
significance test. 
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Figure S12. Mean precipitation rates (from TRMM 3B43 dataset, averaged over 1998-2010) 
during different seasons (left most column) and their correlation with CI (either ONI or AMO) 
sampled during different months (following 12 columns). For months after the end of each 
season (e.g., after Aug for JJA; marked below each panel), ONI and AMO data sampled from the 
previous year were used to estimate the correlation. These results show that AMO had large 
impacts on precipitation in western and southwestern Amazon during both dry season and the 
wet-to-dry transition with 2-4 month lead times. The relationship between ONI and precipitation 
in the dry season was considerably weaker, but ONI may influence the fire season intensity in 
eastern Amazon by impacting the precipitation rate during the wet-to-dry transition. 
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Figure 13. Monthly means of precipitation rate (PPT) with error bars, relative standard deviation 
(!) of PPT, and FC. The PPT data were 1998-2010 averages from TRMM 3B43 dataset. The FC 
data were from Terra MODIS observations (averaged during 2001-2010). 
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Figure 14. Correlations between observed FSS and FSS predicted using SST anomaly data with 
larger lead times. The rightmost points for each state represent estimates using ONI and AMO 
sampled during months with optimized lead times (with a 3-month cutoff lead time that is the 
same as that given in Table 1 of the main text).  
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