112 research outputs found

    Temperature compensation of light-emitting diodes

    Get PDF
    Circuit which includes a thermistor-resistor combination to compensate for temperature fluctuations by supplying input voltage to light-emitting diode, maintains constant light output. Similar circuits can be used for temperature-induced variations in photodiode applications

    Self-tuning bandpass filter

    Get PDF
    An electronic filter is described which simultaneously maintains a constant bandwidth and a constant center frequency gain as the input signal frequency varies, and remains self-tuning to that center frequency over a decade range. The filter utilizes a field effect transistor (FET) as a voltage variable resistance in the bandpass frequency determining circuit. The FET is responsive to a phase detector to achieve self-tuning

    A self-tuning filter

    Get PDF
    Self-tuning filter automatically adjusts its center frequency to track signal frequency. This permits the use of a filter with a bandwidth smaller than the range of input signal frequencies

    Precision full-wave rectifier

    Get PDF
    Simplified circuit uses one operational amplifier and two precision resistors. The amplifier is operated open loop for switching and closed loop for linear gain, both simultaneously

    A new solid-state logarithmic radiometer

    Get PDF
    Combination of temperature-compensated logarithmic amplifiers and p-i-n photodiodes operating in zero-bias mode provides lightweight radiometer for detecting spectral intensities encompassing more than three decades over a range of at least 300 to 800 nanometers at low power levels

    AIROscope stellar acquisition

    Get PDF
    The acquisition system which operates in conjunction with a balloon-borne TV system, boresighted to a telescope is described. It has two main functions, a star field monitor and an offset star tracker. The design of the system was strongly influenced by the TV camera, which uses the same interlaced scanning system as is employed in commercial television broadcasting. To reduce power and bandwidth requirements, the star field information transmitted in our system consists only of the horizontal and vertical coordinates of each star and its brightness. As a star field monitor the system provides video thresholding, camera blemish suppression, coordinate digitization in 3 axes, circuity to recognize as single star the dispersed video signals resulting from one star overlapping adjacent scanning lines and storage of all signals for readout by the telemetry at appropriate times
    corecore