1,363 research outputs found
Activation in the COMPTEL double-scattering gamma-ray telescope
Abstract-The COMPTEL gamma-ray telescope has been operating in low Earth orbit for six years, since the launch of the Compton Gamma-Ray Observatory in April 1991. Comparisons of data for different orbits and epochs show evidence of activation on time scales from minutes (27Mg, q,2=9.5 min) to years C2Na, q&.58 yr). The activation is correlated with both the orbital altitude and solar cosmic-ray modulation. Because it requires coincident measurements in two different detectors, COMPTEL is most susceptible to instrumental background events in which two or more photons are produced simultaneously
Nonlinear Dynamic Behavior of Impact Damage in a Composite Skin-Stiffener Structure
One of the key issues in composite structures for aircraft applications is the early identification of damage. Often, service induced damage does not involve visible plastic deformation, but internal matrix related damage, like delaminations. A wide range of technologies, comprising global vibration and local wave propagation methods can be employed for health monitoring purposes. Traditional low frequency modal analysis based methods are linear methods. The effectiveness of these methods is often limited since they rely on a stationary and linear approximation of the system. The nonlinear interaction between a low frequency wave field and a local impact induced skin-stiffener failure is experimentally demonstrated in this paper. The different mechanisms that are responsible for the nonlinearities (opening, closing and contact) of the distorted harmonic waveforms are separated with the help of phase portraits. A basic analytical model is employed to support the observations
An Architectural Approach to Autonomics and Self-management of Automotive Embedded Electronic Systems
International audienceEmbedded electronic systems in vehicles are of rapidly increasing commercial importance for the automotive industry. While current vehicular embedded systems are extremely limited and static, a more dynamic configurable system would greatly simplify the integration work and increase quality of vehicular systems. This brings in features like separation of concerns, customised software configuration for individual vehicles, seamless connectivity, and plug-and-play capability. Furthermore, such a system can also contribute to increased dependability and resource optimization due to its inherent ability to adjust itself dynamically to changes in software, hardware resources, and environment condition. This paper describes the architectural approach to achieving the goals of dynamically self-configuring automotive embedded electronic systems by the EU research project DySCAS. The architecture solution outlined in this paper captures the application and operational contexts, expected features, middleware services, functions and behaviours, as well as the basic mechanisms and technologies. The paper also covers the architecture conceptualization by presenting the rationale, concerning the architecture structuring, control principles, and deployment concept. In this paper, we also present the adopted architecture V&V strategy and discuss some open issues in regards to the industrial acceptance
The first direct measurement of ¹²C (¹²C,n) ²³Mg at stellar energies
Neutrons produced by the carbon fusion reaction ¹²C(¹²C,n)²³Mg play an important role in stellar nucleosynthesis. However, past studies have shown large discrepancies between experimental data and theory, leading to an uncertain cross section extrapolation at astrophysical energies. We present the first direct measurement that extends deep into the astrophysical energy range along with a new and improved extrapolation technique based on experimental data from the mirror reaction ¹²C(¹²C,p)²³Na. The new reaction rate has been determined with a well-defined uncertainty that exceeds the precision required by astrophysics models. Using our constrained rate, we find that ¹²C(¹²C,n)²³Mg is crucial to the production of Na and Al in Pop-III Pair Instability Supernovae. It also plays a non-negligible role in the production of weak s-process elements as well as in the production of the important galacti
New ANCs for synthesis obtained using extrapolation method and the -factor for radiative capture
Background: The O reaction, determining the
survival of carbon in red giants, is of interest for nuclear reaction theory
and nuclear astrophysics. Numerous attempts to obtain the astrophysical factor
of the O reaction, both experimental and
theoretical, have been made for almost 50 years. The specifics of the O
nuclear structure is the presence of two subthreshold bound states, (6.92 MeV,
2) and (7.12 MeV, 1), dominating the behavior of the low-energy
-factor. The strength of these subthreshold states is determined by their
asymptotic normalization coefficients (ANCs) which need to be known with high
accuracy. Recently, using the model-independent extrapolation method,
Blokhintsev {\it et al.} [Eur. Phys. J. A {\bf 59}, 162 (2023)] determined the
ANCs for the three subthreshold states in O.
Purpose: In this paper, using these newly determined ANCs, we calculated the
low-energy astrophysical -factors for the O radiative capture.
Method: The -factors are calculated within the framework of the -matrix
method using the AZURE2 code.
Conclusion: Our total -factor includes the resonance and
transitions to the ground state of O interfering with the corresponding
direct captures and cascade radiative captures to the ground state of O
through four subthreshold states: and . Since our
ANCs are higher than those used by deBoer {\it et al.} [Rev. Mod. Phys. {\bf
89}, 035007 (2017)], the present total -factor at the most effective
astrophysical energy of 300 keV is 174 keVb versus 137 keVb of that work.
Accordingly, our calculated reaction rate at low temperatures () is
higher than the one given in the aforesaid paper
What Next-Generation 21 cm Power Spectrum Measurements Can Teach Us About the Epoch of Reionization
A number of experiments are currently working towards a measurement of the 21
cm signal from the Epoch of Reionization. Whether or not these experiments
deliver a detection of cosmological emission, their limited sensitivity will
prevent them from providing detailed information about the astrophysics of
reionization. In this work, we consider what types of measurements will be
enabled by a next-generation of larger 21 cm EoR telescopes. To calculate the
type of constraints that will be possible with such arrays, we use simple
models for the instrument, foreground emission, and the reionization history.
We focus primarily on an instrument modeled after the
collecting area Hydrogen Epoch of Reionization Array (HERA) concept design, and
parameterize the uncertainties with regard to foreground emission by
considering different limits to the recently described "wedge" footprint in
k-space. Uncertainties in the reionization history are accounted for using a
series of simulations which vary the ionizing efficiency and minimum virial
temperature of the galaxies responsible for reionization, as well as the mean
free path of ionizing photons through the IGM. Given various combinations of
models, we consider the significance of the possible power spectrum detections,
the ability to trace the power spectrum evolution versus redshift, the
detectability of salient power spectrum features, and the achievable level of
quantitative constraints on astrophysical parameters. Ultimately, we find that
of collecting area is enough to ensure a very high significance
() detection of the reionization power spectrum in even the
most pessimistic scenarios. This sensitivity should allow for meaningful
constraints on the reionization history and astrophysical parameters,
especially if foreground subtraction techniques can be improved and
successfully implemented.Comment: 27 pages, 18 figures, updated SKA numbers in appendi
COMPTEL observations of the inner galaxy
This paper presents a first global study of COMPTEL observations of the inner Galaxy in the energy range 0.75–10 MeV. Preliminary findings demonstrate COMPTEL’s capabilities for mapping the observed gamma radiation and disentangling the contributions from point sources and diffuse emission
- …