5 research outputs found

    Analysis of active neural circuits and synaptic mechanisms of memory

    No full text
    One feature of the brain is that different parts of it respond to different stimuli. This means not all brain regions or neurons within those regions are active at a given moment. This feature of the brain gives it the ability to encode and store a wide range of stimuli that are then used to make predictions about a changing external environment. Activation of non-overlapping neural populations is fundamental to the ability to encode a wide range of stimuli to represent a changing environment. To examine the limits of this idea we used genetic tools to label active cell populations following a neutral stimulus presentation or a learned negative association with the same stimulus. The study examined the degree of similarity between these active populations by comparing key features of the active neurons including gene expression and monosynaptic inputs. Another feature of the brain is its ability to store information. In a neural population recently activated by a salient stimulus, molecular processes occur that result in the formation and maintenance of a memory. Collectively these processes are referred to as plasticity, and act on short and long time scales to strengthen the connections between active neurons and weaken the connections between inactive ones. Plasticity processes are not only necessary for the formation and storage of memories but also for wiring up the nervous system during development. A molecule called ZIP has been shown to erase memories months after formation and specifically affects plasticity on longer time scales. However, the effects of ZIP on the developing brain are not well understood and difficult to study using ZIP’s typical delivery method of injection into the brain. To facilitate a developmental study of ZIP’s effects, we made a genetic tool that can specify where and when ZIP is delivered to the brain. Results of the study indicated that males were particularly vulnerable to ZIP during early development while females were unaffected. Together these results provide insight into the limits of information coding potential at the anatomical level and reveal a fundamental difference in plasticity processes in males and females.10000-01-0

    TU-tagging: A method for identifying layer-enriched neuronal genes in developing mouse visual cortex

    No full text
    Thiouracil (TU)-tagging is an intersectional method for covalently labeling newly transcribed RNAs within specific cell types. Cell type specificity is generated through targeted transgenic expression of the enzyme uracil phosphoribosyl transferase (UPRT); temporal specificity is generated through a pulse of the modified uracil analog 4TU. This technique has been applied in mouse using a Cre-dependent UPRT transgene, CA>GFPstop>HA-UPRT, to profile RNAs in endothelial cells, but it remained untested whether 4TU can cross the blood-brain barrier (BBB) or whether this transgene can be used to purify neuronal RNAs. Here, we crossed the CA>GFPstop>HA-UPRT transgenic mouse to a Sepw1-cre line to express UPRT in layer 2/3 of visual cortex or to an Nr5a1-cre line to express UPRT in layer 4 of visual cortex. We purified thiol-tagged mRNA from both genotypes at postnatal day (P)12, as well as from wild-type (WT) mice not expressing UPRT (background control). We found that a comparison of Sepw1-purified RNA to WT or Nr5a1-purified RNA allowed us to identify genes enriched in layer 2/3 of visual cortex. Here, we show that Cre-dependent UPRT expression can be used to purify cell type-specific mRNA from the intact mouse brain and provide the first evidence that 4TU can cross the BBB to label RNA in vivo

    Perceptual Gap Detection Is Mediated by Gap Termination Responses in Auditory Cortex

    Get PDF
    SummaryBackgroundUnderstanding speech in the presence of background noise often becomes increasingly difficult with age. These age-related speech processing deficits reflect impairments in temporal acuity. Gap detection is a model for temporal acuity in speech processing in which a gap inserted in white noise acts as a cue that attenuates subsequent startle responses. Lesion studies have shown that auditory cortex is necessary for the detection of brief gaps, and auditory cortical neurons respond to the end of the gap with a characteristic burst of spikes called the gap termination response (GTR). However, it remains unknown whether and how the GTR plays a causal role in gap detection. We tested this by optogenetically suppressing the activity of somatostatin- or parvalbumin-expressing inhibitory interneurons, or CaMKII-expressing excitatory neurons, in auditory cortex of behaving mice during specific epochs of a gap detection protocol.ResultsSuppressing interneuron activity during the postgap interval enhanced gap detection. Suppressing excitatory cells during this interval attenuated gap detection. Suppressing activity preceding the gap had the opposite behavioral effects, whereas prolonged suppression across both intervals had no effect on gap detection.ConclusionsIn addition to confirming cortical involvement, we demonstrate here for the first time a causal relationship between postgap neural activity and perceptual gap detection. Furthermore, our results suggest that gap detection involves an ongoing comparison of pre- and postgap spiking activity. Finally, we propose a simple yet biologically plausible neural circuit that reproduces each of these neural and behavioral results

    Transgenic Targeting of Recombinant Rabies Virus Reveals Monosynaptic Connectivity of Specific Neurons

    No full text
    Understanding how neural circuits work requires a detailed knowledge of cellular-level connectivity. Our current understanding of neural circuitry is limited by the constraints of existing tools for transsynaptic tracing. Some of the most intractable problems are a lack of cellular specificity of uptake, transport across multiple synaptic steps conflating direct and indirect inputs, and poor labeling of minor inputs. We used a novel combination of transgenic mouse technology and a recently developed tracing system based on rabies virus (Wickersham et al., 2007a,b) to overcome all three constraints. Because the virus requires transgene expression for both initial infection and subsequent retrograde transsynaptic infection, we created several lines of mice that express these genes in defined cell types using the tetracycline-dependent transactivator system (Mansuy and Bujard, 2000). Fluorescent labeling from viral replication is thereby restricted to defined neuronal cell types and their direct monosynaptic inputs. Because viral replication does not depend on transgene expression, it provides robust amplification of signal in presynaptic neurons regardless of input strength. We injected virus into transgenic crosses expressing the viral transgenes in specific cell types of the hippocampus formation to demonstrate cell-specific infection and monosynaptic retrograde transport of virus, which strongly labels even minor inputs. Such neuron-specific transgenic complementation of recombinant rabies virus holds great promise for obtaining cellular-resolution wiring diagrams of the mammalian CNS
    corecore