11 research outputs found

    Waste to Energy from Municipal Wastewater Treatment Plants: A Science Mapping

    Get PDF
    Energy recovery, according to circular economy and sustainable principles, has established itself as an inevitable field of action in wastewater treatment plants (WWTPs). Energy costs are forcing the optimization of processes and increases in the development of applicable waste-to-energy (WtE) technologies. This study aims to analyze the existing knowledge on WtE research in municipal WWTPs using a systematic literature review and a bibliometric analysis from 1979 to 2021. For this purpose, Science Mapping Analysis Tool (SciMAT) and VosViewer, two softwares for analyzing performance indicators and visualizing scientific maps, were used to identify the most relevant figures in the research. The results show an exponential increase in the number of publications over time, which has yet to reach a stage of maturity. The analysis of the evolution of the topics exposes variability in the keywords over the years. The main field of WtE research has focused on sludge treatment, with technologies ranging from anaerobic digestion to more recently-emerging ones such as microalgae or membrane technologies. The analysis also identified the need for more publications on other wastes in WWTPs, which are necessary to achieve zero waste.EMASAGRA S.A 432

    Analyzing the production, quality, and potential uses of solid recovered fuel from screening waste of municipal wastewater treatment plants

    Get PDF
    Over time, wastewater management evolves into a circular model, producing energy and moving towards zero waste. The usual screening waste treatment is the elimination, with no energy recovery processes. As an alternative, the production of solid recovered fuel (SRF) from screening has been studied, both non-densified and densified, in pellet form. The densification was developed, taking as variables the input moisture and size of the die, obtaining 20 different samples. The optimum pelletizing conditions are an input moisture content of 10% and dies with a compression ratio of 6/20, 6/24 and 8/32. SRF properties have been evaluated based on a quality proposal presented in this paper, which has been developed given the lack of uniformity in the existing SRF standards. The SRF produced complies with fuel quality requirements, such as lower calorific value, with values between 13.37 and 25.65 MJ/kg; Cl and Hg content, with maximums of 0.066% and 1.0 × 10����� 5 mg/MJ, respectively; and ash content, between 7.22% and 9.85%. Energy from waste plants could be the destination for all the SRF produced. Its use in cement plants and gasification processes, more restrictive than the previous one, would require manufacturing processes with adequate moisture levels and die size.EMASAGRA 4325University of Granada / CBU

    Environmental Assessment of Solid Recovered Fuel Production from Screening Waste Using a Life Cycle Assessment Approach

    Get PDF
    The circular economy, as a new model of waste management through energy self-sufficiency and valorisation, can be applied to wastewater treatment plants (WWTPs). Screening waste from WWTP pretreatment is the only waste that is not energetically recovered and thus constrains the achievement of zero waste. Previous studies demonstrated the technical feasibility of producing solid recovered fuel (SRF) from this waste. Environmental benefits, including waste reduction, resource conservation, or reduced greenhouse gas emissions are analysed in this work. Environmental impact is quantified using the life cycle assessment (LCA) methodology through the SimaPro 9.2. software and the CML-IA baseline v3.08 impact methodology, that propose 11 impact categories. Five scenarios were established to compare current landfill disposal with the production of densified and non-densified SRF using solar and thermal drying. Within the system boundaries studied, from waste generation to SRF production, results show that landfill is the most environmentally damaging option while producing non-densified SRF using solar drying is the most environmentally viable scenario.Emasagra agreement number 432

    Analyzing the Scientific Evolution of the Sustainable Development Goals

    Get PDF
    Development must balance social, economic, and environmental sustainability; it is for this reason that the Sustainable Development Goals (SDGs) are integrated, in fact, action in one of them will affect outcomes in others. In consequence, research on the SDGs is broad, complex, and fragmented due to the great diversity of disciplines and approaches involved, making it difficult to obtain valuable and unbiased information for future studies. As a result, a comprehensive review of contributions could provide a comprehensive critical perspective. This article applies SciMAT software to analyze the evolution of this field of research through a systematic literature review of bibliographic records on the SDGs and a review based on bibliometric analysis of 10,272 selected records. Additionally, hidden themes and their development in this field from 1990 to 2020 have been identified to produce strategic diagrams, graphs of thematic evolution and performance indicators of the research field in different periods. The results obtained show a constantly evolving scientific field, from its initial focus on the millennium goals to the gradual inclusion of the current SDGs. They provide field experts with a comprehensive overview of the status quo and predict the dynamic directions of future research, serving as a basis for the development of new strategies for the implementation of the SDGs.FEDER/Junta de Andalucía-Consejería de Economía y Conocimiento, thanks to the project “Design of strategists to face the impact of COVID-19 on the compliance with the SDGs in Andalusia”, reference number CV20-0117

    Izaña Atmospheric Research Center. Activity Report 2019-2020

    Get PDF
    Editors: Emilio Cuevas, Celia Milford and Oksana Tarasova.[EN]The Izaña Atmospheric Research Center (IARC), which is part of the State Meteorological Agency of Spain (AEMET), is a site of excellence in atmospheric science. It manages four observatories in Tenerife including the high altitude Izaña Atmospheric Observatory. The Izaña Atmospheric Observatory was inaugurated in 1916 and since that date has carried out uninterrupted meteorological and climatological observations, contributing towards a unique 100-year record in 2016. This reports are a summary of the many activities at the Izaña Atmospheric Research Center to the broader community. The combination of operational activities, research and development in state-of-the-art measurement techniques, calibration and validation and international cooperation encompass the vision of WMO to provide world leadership in expertise and international cooperation in weather, climate, hydrology and related environmental issues.[ES]El Centro de Investigación Atmosférica de Izaña (CIAI), que forma parte de la Agencia Estatal de Meteorología de España (AEMET), representa un centro de excelencia en ciencias atmosféricas. Gestiona cuatro observatorios en Tenerife, incluido el Observatorio de Izaña de gran altitud, inaugurado en 1916 y que desde entonces ha realizado observaciones meteorológicas y climatológicas ininterrumpidas y se ha convertido en una estación centenaria de la OMM. Estos informes resumen las múltiples actividades llevadas a cabo por el Centro de Investigación Atmosférica de Izaña. El liderazgo del Centro en materia de investigación y desarrollo con respecto a las técnicas de medición, calibración y validación de última generación, así como la cooperación internacional, le han otorgado una reputación sobresaliente en lo que se refiere al tiempo, el clima, la hidrología y otros temas ambientales afines

    Izaña Atmospheric Research Center. Activity Report 2021-2022

    Get PDF
    Editors: Emilio Cuevas, Celia Milford and Oksana Tarasova.[EN]The Izaña Atmospheric Research Center (IARC), which is part of the State Meteorological Agency of Spain (AEMET), is a site of excellence in atmospheric science. It manages four observatories in Tenerife including the high altitude Izaña Atmospheric Observatory. The Izaña Atmospheric Observatory was inaugurated in 1916 and since that date has carried out uninterrupted meteorological and climatological observations, contributing towards a unique 100-year record in 2016. This reports are a summary of the many activities at the Izaña Atmospheric Research Center to the broader community. The combination of operational activities, research and development in state-of-the-art measurement techniques, calibration and validation and international cooperation encompass the vision of WMO to provide world leadership in expertise and international cooperation in weather, climate, hydrology and related environmental issues.[ES]El Centro de Investigación Atmosférica de Izaña (CIAI), que forma parte de la Agencia Estatal de Meteorología de España (AEMET), representa un centro de excelencia en ciencias atmosféricas. Gestiona cuatro observatorios en Tenerife, incluido el Observatorio de Izaña de gran altitud, inaugurado en 1916 y que desde entonces ha realizado observaciones meteorológicas y climatológicas ininterrumpidas y se ha convertido en una estación centenaria de la OMM. Estos informes resumen las múltiples actividades llevadas a cabo por el Centro de Investigación Atmosférica de Izaña. El liderazgo del Centro en materia de investigación y desarrollo con respecto a las técnicas de medición, calibración y validación de última generación, así como la cooperación internacional, le han otorgado una reputación sobresaliente en lo que se refiere al tiempo, el clima, la hidrología y otros temas ambientales afines

    Valorización energética del residuo del desbaste procedente de estaciones depuradoras de aguas residuales como combustible sólido recuperado

    Get PDF
    En las últimas décadas los principios de la economía circular se han establecido como un campo de actuación inevitable en las estaciones depuradoras de aguas residuales (EDAR). El incremento de los costes energéticos junto con las obligaciones ambientalmente sostenibles en la gestión de los residuos está cambiando el enfoque dentro de la gestión del agua residual. El concepto de biofactoría redefine a las EDAR implementando procesos para la producción de energía y el avance hacia la consecución del residuo cero. Como parte de la gestión de las aguas residuales, además de la existencia de procesos de reciclaje de arenas y grasas, el desarrollo de tecnologías de conversión de residuos en energía, reconocidas por el concepto en inglés “waste to energy” (WtE), reside principalmente en el ámbito de los lodos. Sin embargo, el residuo de desbaste procedente del pretratamiento es el único que aún no dispone de proceso de valorización, siendo generalmente desechado mediante eliminación en vertedero. Si bien existen estudios sobre las posibles alternativas a la eliminación en vertedero del residuo de desbaste, éstos están centrados en procesos de digestión anaeróbica y aún no se han estudiado otro tipo de vías de valorización de este residuo. En consecuencia, esta investigación ha tenido como objetivo principal el análisis en profundidad de la posibilidad de valorización energética del residuo de desbaste mediante su transformación en combustible sólido recuperado (CSR). A modo de establecer el estado del arte, se ha analizado la evolución científica de las tecnologías WtE en las EDAR municipales mediante una revisión bibliométrica. En relación con el trabajo de laboratorio, se han realizado los ensayos conducentes a la caracterización física y química del residuo del desbaste procedente de la Biofactoría Sur de Granada (España). A continuación, a nivel experimental y teniendo como principales etapas los procesos de secado, trituración y densificación, se produjo CSR sin densificar y densificado, en forma de pellets. La calidad del combustible generado se determinó mediante su caracterización, teniendo como base una nueva propuesta de clasificación del CSR que se desarrolló a partir de varias normativas existentes, tanto a nivel nacional como internacional. Finalmente se realizaron ensayos de laboratorio y balances de energía para los procesos de combustión, gasificación y pirólisis, dirigidos a evaluar el aprovechamiento del CSR producido mediante su valorización en procesos termoquímicos. Además, el proceso de producción de CSR, tanto densificado como sin densificar, se ha sometido a estudios de viabilidad ambiental y económica. Los resultados del mapeo científico muestran un exponencial incremento de publicaciones WtE en EDAR, identificando al mismo tiempo la falta de estudio sobre los residuos del desbaste. El residuo analizado muestra una caracterización, mayormente compuesta de textiles sanitarios (52.1%) además de otras fracciones como papel, plásticos y vegetales. Esta composición se podría asemejar a aquella que compone la fracción rechazo procedente de residuos sólidos urbanos (RSU). Asimismo, su poder calorífico, y los contenidos en Cl y Hg, hacen viable su conversión en CSR según la norma ISO 21640:2021. Se comprobó la viabilidad técnica de la producción de CSR, tanto no densificado como densificado. Para la producción de pellets las variables de entrada fueron la humedad del residuo y el tamaño de prensa, concluyendo que las condiciones óptimas de peletización fueron para una humedad del 10% y con matrices con relaciones de compresión de 6/20, 6/24 y 8/32. Conjuntamente, la determinación de las características del CSR obtenido demostró que se cumplen los requerimientos de la clasificación propuesta, teniendo como destino más favorable de valorización las plantas de producción de energía a partir de residuos. Para el estudio medioambiental y económico se establecieron cuatro escenarios de producción de CSR, diferenciando el tipo de secado y el producto final, como alternativa a la eliminación del residuo del desbaste en vertedero. El análisis de costes y beneficios, realizado mediante la obtención del Valor Neto Actual (VAN) empleando la simulación de Monte Carlo (MC), concluyó que la eliminación en vertedero es el escenario más negativo en términos económicos. Además, al incluir a este análisis la monetización de las emisiones de CO2 generadas se obtuvo que no es una solución viable. Esta conclusión fue también ratificada por el estudio de impacto ambiental, desarrollado mediante el Análisis de Ciclo de Vida (ACV) y para el cuál se utilizó el software SimaPro 9.2. Con esta herramienta se certificó que el vertedero supone el impacto más negativo en 6 de las 11 categorías ambientales analizadas según la metodología CML-IA baseline v3.08. Además, a partir de estos estudios, se obtuvo que el escenario más viable en términos económicos y ambientales sería la generación de CSR sin densificar y mediante la utilización del secado térmico en su proceso de producción. Desde la perspectiva de la valorización energética se compararon los procesos termoquímicos de combustión y gasificación. El análisis teórico de la combustión se realizó mediante balance de energía, teniendo como corriente de entrada el CSR con diferentes niveles de humedad. Para la gasificación se realizaron ensayos a escala de laboratorio donde se determinaron los gases de salida producidos, a partir de los cuáles se llevó a cabo otro balance de energía, en este caso para la combustión de esos gases. La combustión del CSR en sólido fue el proceso más efectivo, con un beneficio energético máximo de 178.63 MJ por cada 100 kg de CSR en bruto (con humedad del 77.3%), mientras que la gasificación ofreció resultados máximos de 42.48 MJ para la misma cantidad de CSR. Desde un punto de vista no energético, la pirólisis, también analizada en base al diseño experimental a escala de laboratorio, reflejó la viabilidad de generar productos de valor añadido, como el char o el líquido de pirólisis.In recent decades the principles of the circular economy have established themselves as an unavoidable field of action in wastewater treatment plants (WWTPs). Increasing energy costs and environmentally sustainable obligations in waste management are changing the focus on wastewater management. The biorefinery concept redefines WWTPs by implementing processes for energy production and moving towards zero waste. As part of wastewater management, in addition to sand and grease recycling processes, waste to energy (WtE) technologies development lies mainly in sludge. However, only the screening waste from pre-treatment still has no recovery process and is generally disposed of by landfill disposal. Although there are studies on the possible alternatives to landfill disposal of the screening waste, these are focused on anaerobic digestion processes. This is the only type of recovery route for this waste that has yet to be studied. Consequently, the main objective of this research has been the in-depth analysis of the possibility of energy recovery of the screening waste through its transformation into solid recovered fuel (SRF). In order to establish the state of the art, the scientific evolution of WtE technologies in municipal WWTPs was analyzed using a bibliometric review. Tests leading to the physical and chemical characterization of the screening waste from the Biofactoría Sur in Granada (Spain) were carried out concerning the laboratory work. Then, at an experimental level and having as main stages the drying, crushing and densification phases, SRF was produced without densification and densified in the form of pellets. The fuel quality was determined by utilizing its characterization based on a new SRF classification proposal developed based on several existing national and international regulations. Finally, laboratory tests and energy balances were carried out for the combustion, gasification, and pyrolysis processes to evaluate the use of the SRF produced through its valorization in thermochemical processes. In addition, the SRF production process, both densified and non-densified, has been subjected to environmental and economic feasibility studies. The results of the scientific mapping show an exponential increase of WtE publications in WWTPs, identifying at the same time the lack of study on the waste from desludging. The analyzed waste mainly comprises sanitary textiles (52.1%) and other fractions such as paper, plastics and vegetables. This composition could be similar to the rejection fraction from municipal solid waste (MSW). Furthermore, its calorific value and Cl and Hg contents make it viable for conversion into SRF according to ISO 21640:2021. The technical feasibility of SRF production, both nondensified and densified, was tested. For pellet production, the input variables were residue moisture and press size, obtaining that the optimum palletization conditions were for a moisture content of 10% and with matrices with compression ratios of 6/20, 6/24 and 8/32. Together, the determination of the characteristics of the SRF obtained showed that the requirements of the proposed classification were met, with the most favourable destination for recovery being waste-to-energy plants. For the environmental and economic study, four SRF production scenarios were established, differentiating the drying type and final product as an alternative to landfill disposal of the screening waste. The cost-benefit analysis, carried out by obtaining the Net Present Value (NPV) using Monte Carlo (MC) simulation, concluded that landfill disposal is the most pessimistic scenario in economic terms. Furthermore, including the monetization of the CO2 emissions generated in this analysis concluded that it is not a viable solution. The environmental impact study also ratified this conclusion, developed using Life Cycle Analysis (LCA) and for which the SimaPro 9.2 software was used. This tool certified that the landfill has the most negative impact in 6 of the 11 environmental categories analyzed according to the CML-IA baseline v3.08 methodology. Furthermore, from these studies, it was obtained that the most viable scenario in economic and environmental terms would be the generation of SRF without densification and by using thermal drying in the production process. From the perspective of energy recovery, the thermochemical processes of combustion and gasification were compared. The theoretical combustion analysis was carried out through energy balance, having the SRF with different moisture levels as the input stream. Laboratory-scale tests were carried out for gasification to determine the output gases produced. In this case, another energy balance was carried out for the combustion of these gases. Solid SRF combustion was the most effective process, with a maximum energy benefit of 178.63 MJ per 100 kg of raw SRF (at 77.3% moisture). In comparison, gasification gave maximum results of 42.48 MJ for the same amount of SRF. From a non-energy point of view, pyrolysis, also analyzed based on the laboratory-scale experimental design, reflected the feasibility of generating value-added products, such as char or pyrolysis liquid.Tesis Univ. Granada.Contrato con cargo a Grupos, Proyectos y Convenios. Número de Referencia de Contrato OTRI: 4325Universidad de GranadaEMASAGRA S.

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Analysing the Sustainability of the Production of Solid Recovered Fuel from Screening Waste

    Get PDF
    The development in wastewater management has caused a shift towards a circular model that prioritises energy generation and waste reduction. Traditional unitary processes in wastewater treatment, such as screening, only allow for landfill disposal without energy recovery. However, producing solid recovered fuel (SRF) from waste screening may be a possibility. The economic and environmental viability of this alternative, as a fundamental requirement for its implementation at industrial level, was assessed through a multi-scenario analysis using Monte Carlo simulation. The cost and benefit streams were determined based on the financial net present value (NPVf) and the social net present value (NPVs), including monetised CO2 emissions generated. The results showed that waste drying costs were found to be the most significant ones, with thermal drying being more financially advantageous than solar drying. The densification of SRF raises the costs by 7.88 to 8.48%, but its use as fuel would likely be profitable due to the economic benefits it provides. Current landfill disposal practices, which have an NPVs of −1052.60 EUR/t, are not a feasible, particularly when compared to the other SRF production scenarios, with maximum NPVs of −53.91 EUR/t. SRF production without densification using solar drying is the most acceptable scenario with the lowest NPVs (38.39 EUR/t)

    Management of Used COVID-19 Personal Protective Equipment: A Bibliometric Analysis and Literature Review

    No full text
    Using a science mapping approach, we analyzed the exponential increase in the number of scientific documents about the negative environmental impacts produced by waste from personal protective equipment (PPE), especially face masks, used to reduce SARS-CoV-2 transmission worldwide. Our results revealed that India, China, and Canada are leaders in this research field, which is clearly related to environmental issues, but also the solutions developed from an engineering point of view. Our analysis of the most-relevant documents in the field uncovered the considerable negative effects of PPE waste in aquatic media, its contribution to greenhouse gas emissions, effects on wildlife, etc. To reduce the negative environmental impacts of PPE waste, we need to implement innovative ecodesign strategies for their green production, including their re-use as and the use of recycling materials, but also a collaboration with the population to reduce PPE waste at its source. Both action lines could be materialized by establishing a collective, extended producer responsibility system for PPE to ensure their sustainable production and consumption. These well-implemented strategies will contribute to maintaining progress towards achieving sustainable development goals
    corecore