9,226 research outputs found

    New supersymmetric higher-derivative couplings: Full N=2 superspace does not count!

    Get PDF
    An extended class of N=2 locally supersymmetric invariants with higher-derivative couplings based on full superspace integrals, is constructed. These invariants may depend on unrestricted chiral supermultiplets, on vector supermultiplets and on the Weyl supermultiplet. Supersymmetry is realized off-shell. A non-renormalization theorem is proven according to which none of these invariants can contribute to the entropy and electric charges of BPS black holes. Some of these invariants may be relevant for topological string deformations.Comment: 24 pages, v2: version published in JHEP, one reference added and typos corrected, v3: reference adde

    Covariant Quantization of D-branes

    Get PDF
    We have found that kappa-symmetry allows a covariant quantization provided the ground state of the theory is strictly massive. For D-p-branes a Hamiltonian analysis is performed to explain the existence of a manifestly supersymmetric and Lorentz covariant description of the BPS states of the theory. The covariant quantization of the D-0-brane is presented as an example.Comment: 16 pages, no figure

    STU Black Holes and String Triality

    Get PDF
    We find double-extreme black holes associated with the special geometry of the Calabi-Yau moduli space with the prepotential F=STU. The area formula is STU-moduli independent and has [SL(2,Z)]3{[SL(2,Z)]}^3 symmetry in space of charges. The dual version of this theory without prepotential treats the dilaton S asymmetric versus T,U-moduli. We display the dual relation between new (STU) black holes and stringy (S|TU) black holes using particular Sp(8, Z) transformation. The area formula of one theory equals that of the dual theory when expressed in terms of dual charges. We analyse the relation between (STU) black holes to string triality of black holes: (S|TU), (T|US), (U|ST) solutions. In the democratic STU-symmetric version we find that all three S and T and U duality symmetries are non-perturbative and mix electric and magnetic charges.Comment: 12 pages, 2 Postscript figures, ref.added, minor corrections, version to appear in Phys. Rev.

    Supersymmetric N=2 Einstein-Yang-Mills monopoles and covariant attractors

    Get PDF
    We present two generic classes of supersymmetric solutions of N=2, d=4 supergravity coupled to non-Abelian vector supermultiplets with a gauge group that includes an SU(2) factor. The first class consists of embeddings of the 't Hooft-Polyakov monopole and in the examples considered it has a fully regular, asymptotically flat space-time metric without event horizons. The other class of solutions consists of regular non-Abelian extreme black holes. There is a covariant attractor at the horizon of these non-Abelian black holes.Comment: 14 pages, Late

    Stable de Sitter Vacua in 4 Dimensional Supergravity Originating from 5 Dimensions

    Full text link
    The five dimensional stable de Sitter ground states in N=2 supergravity obtained by gauging SO(1,1) symmetry of the real symmetric scalar manifold (in particular a generic Jordan family manifold of the vector multiplets) simultaneously with a subgroup R_s of the R-symmetry group descend to four dimensional de Sitter ground states under certain conditions. First, the holomorphic section in four dimensions has to be chosen carefully by using the symplectic freedom in four dimensions; and second, a group contraction is necessary to bring the potential into a desired form. Under these conditions, stable de Sitter vacua can be obtained in dimensionally reduced theories (from 5D to 4D) if the semi-direct product of SO(1,1) with R^(1,1) together with a simultaneous R_s is gauged. We review the stable de Sitter vacua in four dimensions found in earlier literature for N=2 Yang-Mills Einstein supergravity with SO(2,1) x R_s gauge group in a symplectic basis that comes naturally after dimensional reduction. Although this particular gauge group does not descend directly from five dimensions, we show that, its contraction does. Hence, two different theories overlap in certain limits. Examples of stable de Sitter vacua are given for the cases: (i) R_s=U(1)_R, (ii) R_s=SU(2)_R, (iii) N=2 Yang-Mills/Einstein Supergravity theory coupled to a universal hypermultiplet. We conclude with a discussion regarding the extension of our results to supergravity theories with more general homogeneous scalar manifolds.Comment: 54 page

    Hyperbolic Kac Moody Algebras and Einstein Billiards

    Full text link
    We identify the hyperbolic Kac Moody algebras for which there exists a Lagrangian of gravity, dilatons and pp-forms which produces a billiard that can be identified with their fundamental Weyl chamber. Because of the invariance of the billiard upon toroidal dimensional reduction, the list of admissible algebras is determined by the existence of a Lagrangian in three space-time dimensions, where a systematic analysis can be carried out since only zero-forms are involved. We provide all highest dimensional parent Lagrangians with their full spectrum of pp-forms and dilaton couplings. We confirm, in particular, that for the rank 10 hyperbolic algebra, CE10=A15(2)CE_{10} = A_{15}^{(2)\wedge}, also known as the dual of B8B_8^{\wedge\wedge}, the maximally oxidized Lagrangian is 9 dimensional and involves besides gravity, 2 dilatons, a 2-form, a 1-form and a 0-form.Comment: 33 page

    N=2 Conformal Superspace in Four Dimensions

    Full text link
    We develop the geometry of four dimensional N=2 superspace where the entire conformal algebra of SU(2,2|2) is realized linearly in the structure group rather than just the SL(2,C) x U(2)_R subgroup of Lorentz and R-symmetries, extending to N=2 our prior result for N=1 superspace. This formulation explicitly lifts to superspace the existing methods of the N=2 superconformal tensor calculus; at the same time the geometry, when degauged to SL(2,C) x U(2)_R, reproduces the existing formulation of N=2 conformal supergravity constructed by Howe.Comment: 43 pages; v2 references added, acknowledgments update

    The Tensor Hierarchies of Pure N=2,d=4,5,6 Supergravities

    Get PDF
    We study the supersymmetric tensor hierarchy of pure (gauged) N=2,d=4,5,6 supergravity and compare them with those of the pure, ungauged, theories (worked out by Gomis and Roest for d=5) and the predictions of the Kac-Moody approach made by Kleinschmidt and Roest. We find complete agreement in the ungauged case but we also find that, after gauging, new Stueckelberg symmetries reduce the number of independent "physical" top-forms. The analysis has to be performed to all orders in fermion fields. We discuss the construction of the worldvolume effective actions for the p-branes which are charged with respect to the (p+1)-form potentials and the relations between the tensor hierarchies and p-branes upon dimensional reduction.Comment: LaTeX2e file, 20 pages, 1 figure Results refined by extension of the analysis to all orders in fermion

    On BPS bounds in D=4 N=2 gauged supergravity II: general matter couplings and black hole masses

    Get PDF
    We continue the analysis of BPS bounds started in arXiv:1110.2688, extending it to the full class of N=2 gauged supergravity theories with arbitrary vector and hypermultiplets. We derive the general form of the asymptotic charges for asymptotically flat (M_4), anti-de Sitter (AdS_4), and magnetic anti-de Sitter (mAdS_4) spacetimes. Some particular examples from black hole physics are given to explicitly demonstrate how AdS and mAdS masses differ when solutions with non-trivial scalar profiles are considered.Comment: 21 pages; v2 added reference, published version; v3 minor correction

    An active asteroid belt causing the UX Ori phenomenon in RZ Psc

    Full text link
    We report the discovery of mid-infrared excess emission in the young object RZ Psc. The excess constitutes ~8% of its Lbol, and is well fit by a single 500K black-body implying a dust free region within 0.7AU for optically thick dust. The object displays dust obscuration events (UXOR behaviour) with a time-scale that suggests dusty material on orbits of 0.5AU. We also report a 12.4 year cyclical photometric variability which can be interpreted as due to perturbations in the dust distribution. The system is characterized by a high inclination, marginal extinction (during bright photometric states), a single temperature for the warm dust, and an age estimate which puts the star beyond the formation stage. We propose that the dust occultation events present a dynamical view of an active asteroid belt whose collisional products sporadically obscure the central star.Comment: Accepted for A&A letter
    corecore