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M. Hübscher, P. Meessen, T. Ortı̀n, and S. Vaulà
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We present two generic classes of supersymmetric solutions of N ¼ 2, d ¼ 4 supergravity coupled to

non-Abelian vector supermultiplets with a gauge group that includes an SUð2Þ factor. The first class

consists of embeddings of the ’t Hooft-Polyakov monopole and in the considered model is a globally

regular, asymptotically flat spacetime. The other class of solutions consists of regular non-Abelian

extreme black holes. There is a covariant attractor at the horizon of these non-Abelian black holes.
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The search for and study of supersymmetric supergrav-
ity solutions having the interpretation of long-range fields
of string states has been one of the most fruitful fields of
theoretical research for the last 15 years. All this work is
having a big impact in the study of general relativity
solutions since, after all, the supersymmetric supergravity
solutions are nothing but particular examples of standard
solutions of gravity coupled to standard bosonic matter
fields. Minkowski and anti-de Sitter spacetimes, the ex-
treme Reissner-Nordström black-hole solution, and gravi-
tational pp-waves are some examples of supersymmetric
supergravity solutions.

In 4-dimensional theories, most of the effort has been
directed to finding and studying asymptotically flat black-
hole solutions with Abelian charges (the Reissner-
Nordström black hole [BH] being among them). The
most general ones in ungauged N ¼ 2, d ¼ 4 supergravity
coupled to vector supermultiplets were found in Ref. [1,2].
This, and the existence of the attractor mechanism [3], that
fixes the values of the scalars at the horizon in terms of the
conserved electric and magnetic charges only, and its
relations to stringy black hole entropy calculations or to
topological strings are two of the main results obtained so
far.

These results have not been extended to black holes with
non-Abelian charges and the little work that has been done
concerns magnetic monopoles. This is due, in part, to the
fact that little is known about this kind of solution in the
nonsupersymmetric Einstein-Yang-Mills (EYM) theories:
the only analytically known black-hole EYM solutions
correspond just to the embedding of Abelian solutions
whereas the purely non-Abelian solutions are only known
numerically [4]. On the supergravity side, two main results
have been the construction of supersymmetric, globally
regular, gravitating monopole solutions in N ¼ 4, d ¼ 4
theories by Harvey and Liu [5] and Chamseddine and
Volkov [6]. These have not been extended to black holes
and, to the best of our knowledge, there is no microscopic
interpretation of these massive charged objects that are not
black holes but may be elementary constituents of them.
Thus, we do not know whether and how the attractor
mechanism works in non-Abelian black holes.

Our aim is to start filling this gap in our knowledge of
supersymmetric supergravity solutions with non-Abelian
Yang-Mills (YM) fields (whence also in EYM theories), by
studying, in particular, black-hole and monopole-type so-
lutions. We are going to present an extension of the results
of [7,8], characterizing the most general static supersym-
metric solutions in N ¼ 2, d ¼ 4 supergravity coupled to
non-Abelian vector supermultiplets [9], to which we shall
refer as N ¼ 2 super-Einstein-Yang-Mills theory (SEYM).
The bosonic sector of this theory differs from the standard
pure EYM theory by the presence of charged scalar fields
with couplings and a scalar potential dictated by local
supersymmetry. The presence of scalars will allow us to
study the existence of an attractor mechanism for their
values at the horizon. This characterization simplifies the
search for supersymmetric black-hole solutions and we are
going to use it to construct explicit solutions in a specific
model admitting an SOð3Þ gauge group.
Monopoles in N ¼ 2 gauge theories were first studied in

[10], and the model we are going to study is its closest

supergravity analogue: SOð3Þ gauged model on CP3. In
fact, one can see that the YM limit of the model (see e.g.
[11]) explicitly leads to the theory studied in [10]. SOð3Þ
monopoles in EYMwere also studied in Ref. [12], but their
model can only be related to a supergravity theory for a
specific value of the dilaton coupling [13]; at this value
their solution is the one found in Ref. [5].
We are going to see that the model considered (and

presumably a lot more models, including the stringy
ones) admits solutions in which the YM fields describe
the ’t Hooft-Polyakov monopole with a globally regular
metric. We will also show, by finding an explicit analytic
expression for them, that this model (and, again, probably
many more models) admits solutions with non-Abelian
YM fields having the same asymptotic behavior as the
’t Hooft-Polyakov monopole and whose metrics are regular
outside an event horizon. We will also describe how the
attractor mechanism works in this example. The monopole
solutions found long ago in Refs. [5,6] should be particular
examples of this general class of monopole solutions.
Furthermore, the SUð2Þ �Uð1Þ black-hole solution of
Ref. [14] should also belong to the class of black hedge-
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hogs, although finding the exact correspondence is a diffi-
cult task.

The occurrence of a covariant attractor mechanism is
intriguing and work on a general proof is under way.

We start by describing the bosonic sector of N ¼ 2, d ¼
4 supergravity coupled to nV non-Abelian vector super-
multiplets, i.e. N ¼ 2 SEYM. It is a generalization of the
EYM theory with nV þ 1 vector fields A�

�, � ¼
0; 1; . . . nV and nV complex scalars Zi, i ¼ 1; . . . n that
parametrize a special-Kähler manifold with metric
Gij� ðZ; Z�Þ [15]. The theory has a non-Abelian gauge

symmetry that acts on the vector and scalar fields, which
are charged. In contrast to pure EYM theory, however, the
SEYM theory has a scalar potential VðZ; Z�Þ and a scalar
matrix N ��ðZ; Z�Þ that couples to the vector field
strengths whose forms are dictated by supersymmetry.

More explicitly, the bosonic Lagrangian for these theo-
ries can be written in the form

e�1L ¼ Rþ 2Gij�D�Z
iD�Z�j�

þ 2F��� ? F��� � V: (1)

Here, the gauge covariant derivative on the scalars is

D �Z
i ¼ @�Z

i þ gA�
�k�

i; (2)

where k�
iðZÞ are the holomorphic Killing vectors of the

scalar metric Gij� . The electric field strengths F���, and

their magnetic duals

F��� � <eN ��F
�
�� þ=mN �� ? F�

��; (3)

define a 2ðnV þ 1Þ-dimensional symplectic vector of 2-
forms F ¼ ðF�; F�Þ. The real and imaginary parts of the
matrix N ��ðZ; Z�Þ are field-dependent generalizations of
the �-angle and the coupling constant. Finally, the potential
is given by

VðZ; Z�Þ ¼ � 1

4
g2ð=mN Þ�1j��P�P�; (4)

whereP� is the momentummap satisfying k�i� ¼ i@i�P�.
Since =mN �� must be negative-definite and the P� are
real, we have V � 0.

A useful alternative description of the nV scalars Zi is
through the 2ðnV þ 1Þ-dimensional complex symplectic
section V � ðL�;M�Þ. To eliminate the redundancy in
this description of the scalars, V is subject to several
constraints such as

hV �;V i � L�M�
� �L��M� ¼ i; (5)

and a gauge symmetry described in the references cited
above. An important constraint is that

M � ¼ @L�F ðL�Þ; (6)

where F , called the prepotential, is a homogeneous func-
tion of degree 2, that depends on the model under consid-
eration and determines it uniquely, i.e. Gij� , V , andN ��

can be derived from it. The physical scalars are recovered
from V via

Zi ¼ Li=L0: (7)

We are interested in solutions of the above system and
particularly in the supersymmetric (Bogomol’nyi-Prasad-
Sommerfield monopole [BPS]) ones, which are easier to
find. Actually, the general form of all of them can be found
following the procedure of Refs. [7,8]. It turns out that a
wide class of supersymmetric static solutions can be con-
structed starting from a solution of the standard
Bogomol’nyi equation [16]

�pmnF
�
mn ¼ � ffiffiffi

2
p

DpI�; m; n; p ¼ 1; 2; 3; (8)

for real ‘‘Higgs’’ scalars I� such as those describing well-
known YM monopoles. Given a solution A�

m, I� of this
equation, it is enough to solve next

D mDmI� ¼ 1

2
g2½f�ð�

�f�Þ�
�I�I��I�; (9)

for the real scalars I� satisfying the condition [17]

hI jDmIi ¼ 0; I � ðI�; I�Þ; (10)

to determine a complete supersymmetric static solution of
all the equations of motion of the theory. We now show
how the physical fields of the theory are derived from this
information.
The real symplectic vector I is, in these solutions, the

imaginary part ofV =X � Rþ iI . The real partR can be
found from Eq. (6), which in this context are known as
stabilization equations. Then, knowing R and I , and
therefore V =X, we can find the physical scalars using
Eq. (7)

Zi ¼ Li=L0 ¼ ðLi=XÞ=ðL0=XÞ ¼ Ri þ iI i

R0 þ iI0
: (11)

The metric reads

ds2 ¼ 2jXj2dt2 � ð2jXj2Þ�1dxmdxm; (12)

and F ¼ ðF�; F�Þ take the form
F ¼ � ffiffiffi

2
p

DðjXj2RdtÞ � ffiffiffi
2

p jXj2 ? ðdt ^DIÞ; (13)

and both of them are uniquely determined by R, I , as
Eq. (5) implies that

ð2jXj2Þ�1 ¼ hR j Ii: (14)

This provides a systematic procedure to generate super-
symmetric solutions to the N ¼ 2 SEYM theories that we
have described. The well-known solutions of the Abelian
case are obviously included. We will work out an example
of special interest following the above steps.
Let us consider N ¼ 2 SEYM systems. We split the

index � into an a-index a ¼ 1; 2; 3 on which an SOð3Þ
gauge group acts, and a u-index labeling the ungauged
directions. In these directions, the Ius are harmonic func-
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tions on R3 which we will choose judiciously. In the
gauged directions, making the standard hedgehog ansatz

I a ¼ IðrÞna; Aa
m ¼ �ðrÞ"mn

ann

na � xar�1; r �
ffiffiffiffiffiffiffiffiffiffi
xbxb

p
;

(15)

the Bogomol’nyi equation (8) admits a 2-parameter family
of solutions given by [18]

IðrÞ ¼ ffiffiffi
2

p
�g�1H�ð�rÞ;

H�ðrÞ ¼ cothðrþ �Þ � r�1;

�ðrÞ ¼ �g�1G�ð�rÞ;
G�ðrÞ ¼ r�1 � sinh�1ðrþ �Þ:

(16)

In this family there are two particularly interesting so-
lutions, namely � ¼ 0 and � ! 1.

In the � ¼ 0 solution the functions G0 and H0 are
regular and bound between 0 and 1. Thus, we see that I
and � are regular at r ¼ 0. The YM fields of this solution
are those of the ’t Hooft-Polyakov monopole [19].

In the limit � ! 1 the solution becomes

Aa
m ¼ "mb

anbðgrÞ�1;

Ia ¼ � ffiffiffi
2

p ðI1 þ ðgrÞ�1Þna;
I1 � ��g�1:

(17)

These fields are singular at r ¼ 0: this singularity makes
the solution uninteresting in flat spacetime and is, proba-
bly, the reason why it has not been considered before in the
literature. However, the coupling to gravity may cover it by
an event horizon in which case we would obtain a non-
Abelian black-hole solution which we call a ‘‘black
hedgehog.’’

The next step is to obtain the Ia from Eq. (9) [20]. A
solution is found by observing that, if Ia � na, the right-
hand side of said equation vanishes identically.
Equation (9) then reduces to the integrability condition of
Eq. (8), so that

I a ¼ 1

2
gJIa; (18)

where J is an arbitrary constant.
The fact that Ia has the same functional form as Ia has

consequences for the staticity condition Eq. (10): the con-
dition (10) acts nontrivially only on the ungauged part, i.e.

0 ¼ IudIu � IudIu þ IaDIa � IaDIa

¼ IudIu � IudIu: (19)

This equation is the same that appears in the Abelian case
and can be solved in exactly the same way [21].

At this point the solutions are completely determined. In
order to find the explicit form of the physical fields, we
must find R by solving the stabilization equations which

depend on the specific supergravity model considered. Let
us then consider a simple SOð3Þ gauged model.
As mentioned before, we can describe a particular model

by specifying the prepotential F , Eq. (6), and the gauge
group. The prepotential for the model with special-Kähler

manifold CPn reads

F ¼ i

4
���L�L�; � ¼ diagð�; ½þ�nÞ: (20)

The Kähler potential is

e�K ¼ jX0j2 � jXij2 ¼ 1� jZij2 � 1� jZj2; (21)

which results in the Fubini-Study metric on CPn. Observe
that due to Eq. (21) the coordinates Zi are constrained to
0 � jZj2 < 1.
The stabilization equations (6) can be readily solved for

this model:

R � ¼ � 1

2
���I�; R� ¼ 2���I�; (22)

which allows us to write the metrical factor in Eq. (14) in
terms of the I� and I� as

g�1
tt ¼ �grr ¼ 1

2
½I02 � I i2 þ 4I2

0 � 4I2
i �: (23)

Consider the case n ¼ 3 with gauge group SOð3Þ acting
on the indices a ¼ 1; 2; 3 and with the ungauged direction
u ¼ 0; the solution for Aa

m, Ia, Ia is given by Eqs. (15),
(17), and (18). I0 and I0 are arbitrary harmonic functions
in R3 that we will choose in such a way as to solve Eq. (10)
and get regular solutions. We find

� grr ¼ 1

2
fI02 þ 4I2

0 � 2�2½g�2 þ J 2�H2
�ð�rÞg: (24)

Let us try to find a globally regular embedding of the

’t Hooft-Polyakov monopole in the CP3 model: as the
function H0ð�rÞ is bound, it is enough for I0 and I0 to
be constant in order to ensure that the scalars satisfy their
constraint. Actually, taking them to be nonconstant would
produce scalars violating said constraint and would intro-
duce singularities. Fixing the values of I0 and I0 by
imposing asymptotic flatness we find

� grr ¼ 1þ�2½g�2 þ J 2�ð1� H2ð�rÞÞ; (25)

which implies that the metric is globally regular and de-
scribes an object of mass

M ¼ �½g�2 þ J 2�: (26)

Let us now consider the black hedgehog case: since the
function H1ð�rÞ is singular, either I0 or I0 has to be a
nonconstant harmonic function as to produce scalar fields
that satisfy the constraint 0 � jZj2 < 1.
Choosing for simplicity

I 0 ¼ I01 þ p0r�1; (27)
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we get

�grr ¼¼ 1

2
fI012 � 2�2½g�2 þ J 2�g

þ fI01p0 � 2j�j½g�2 þ J 2�gr�1

þ 1

2
fp02 � 2½g�2 þ J 2�gr�2: (28)

The first term can be normalized to 1 as to recover
Minkowski asymptotically. With this normalization the
coefficient of the second term is the mass and should be
positive; the coefficient of the last term, if positive, is the
area of an event horizon divided by 4�. Under the provisos
of positivity of mass and area, the above metric can be seen
to describe the geometry outside the outer horizon of a
regular BH and the coefficient of the last term is identified
with its entropy (see e.g. [21]).

It is always possible to choose the parameters such as to
obtain a regular black hole. A simple choice is

I 01 ¼ ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�2½g�2 þ J 2�

q
; p0 ¼ j�j�1I01;

(29)

and gives a mass and event horizon area

M ¼ 2j�j�1 A ¼ 4�j�j�2: (30)

This black-hole solution has a truly non-Abelian mag-
netic charge and it is the first of this kind whose analytic
form is known. It is clear that the presence of scalars with
nontrivial couplings dictated by supersymmetry plays a
crucial role in the simplicity of their final form.

The asymptotic values of the scalars seem to violate the
no-hair theorem, as the BH is naively specified by more
than its mass and conserved charges. As in the Abelian

case, however, they should be considered secondary hair in
the sense of Ref. [22]. This interpretation is in accord with
the fact that on the horizon the scalars are

Za ¼
ffiffiffi
2

p
p0

ðg�1 � iJ Þna; (31)

which are independent of their asymptotic values, but are
not constant over the horizon. Actually, since these scalars
are charged, the most we can ask for is that they be constant
up to SOð3Þ gauge transformations, which is the case. The
scalar fields have a covariant attractor on the horizon and
their gauge-invariant combination jZj2 has a standard at-
tractor, as in the Abelian case. The entropy, proportional to
the area, can be expressed in terms of the conserved
charges only, allowing, as in the Abelian theories, for a
microscopic interpretation.
Monopole and black-hole solutions similar to those

found here should also occur in other models with SOð3Þ
gauge group, but a completely general and explicit con-
struction is not possible and the details need to be worked
out case by case.
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