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1 Introduction and general results

This paper is a continuation of the work of [1] and aims at a derivation of the BPS bounds

for solutions of gauged D = 4 N = 2 supergravity with vector and hypermultiplets. We

briefly recall that in [1] a method was developed for explicit evaluation of BPS bounds for

solutions in supergravity, based on their asymptotic Killing spinors. The main results were

the derivation of the asymptotic charges in minimal gauged supergravity for asymptotically

AdS and magnetic AdS solutions, which differ by their magnetic charge. For stationary

solutions, the BPS bound in AdS with vanishing magnetic charge Qm = 0 is found to be

M ≥ |Qe|+ g| ~J | , (1.1)

with M the mass, Qe the electric charge, ~J the angular momentum of the given solution,

and g the gauge coupling that is related to the cosmological constant. For asymptotically

mAdS solutions on the other hand, the BPS bound is

M ≥ 0 , (1.2)

with magnetic charge Qm = ±1/(2g).
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As we show in the present work, the superalgebra structure does not change when

considering more general matter couplings in the theory. Thus, (1.1) and (1.2) continue to

hold. However, the explicit definition of the asymptotic charges (M,Qe, etc.) of a given so-

lution depends directly on the field content. We first derive the form of the supersymmetry

anticommutator for all possible solutions of gauged supergravity with vectors and hypers.

Then we focus on the special cases of Minkowski, AdS, and mAdS asymptotics where we

evaluate the anticommutator explicitly. These calculations show that the hypermultiplets

do not produce additional central charges in the superalgebra. We are also able to formu-

late renormalized expressions for the mass in AdS and mAdS. Our results in AdS are in

exact agreement with the techniques of holographic renormalization [2–5]. On the other

hand, the mAdS mass takes a different form and in some examples leads to qualitatively

different results that have no analog in previous literature.

We consider the most general (two-derivative) electrically1 gauged D = 4 N = 2

supergravity, following strictly the conventions of [8] (that are mostly the same as in [9]).

For further background material on N = 2 supergravity, see e.g. [10–14]. The standard

N = 2 graviton multiplet (graviton gµν , graviphoton Ag
µ and two gravitinos) is coupled

with nV vector multiplets (nV complex scalars zi, nV vectors Ai
µ and 2nV gauginos)2 and

nH hypermultiplets (4nH real scalars qu and 2nH hyperinos). The bosonic part of the

lagrangian is

L =
1

2
R(g) + gī(z, z̄)∇µzi∇µz̄

̄ + huv(q)∇µqu∇µq
v + IΛΣ(z, z̄)F

Λ
µνF

Σµν (1.3)

+
1

2
RΛΣ(z, z̄)ǫ

µνρσFΛ
µνF

Σ
ρσ − 4

3
g cΛ,ΣΠ ǫ

µνρσAΛ
µA

Σ
ν

(
∂ρA

Π
σ −

3

8
fΩΓ

ΠAΩ
ρA

Γ
σ

)
−V (z, z̄, q) ,

with scalar potential

V = g2
[
(gīk

i
Λk

̄
Σ + 4huvk

u
Λk

v
Σ)L̄

ΛLΣ + (gīfΛi f̄
Σ
̄ − 3L̄ΛLΣ)P x

ΛP
x
Σ

]
. (1.4)

Most of the above quantities and the supersymmetry transformations will not be important

for our purposes here so we leave the more technical introduction to the full lagrangian

to appendix A. The quantities of relevance for the derivation of the BPS bound will be

introduced shortly when needed. As described in detail in [1], one in principle needs to

consider the full lagrangian (or just upto second order terms in fermions when eventually

setting fermions to zero) in order to derive the expression for the supercharges. Alterna-

tively, one can fix the right form of the supercharges from the supersymmetry variations.

From our knowledge of the minimal case [1] and with the help of the susy variations we

can derive explicitly the supercharge, as done in appendix B. The original expression for

the supercharge is somewhat lengthy and non-suggestive. However, using the equations

1Although explicitly concentrating on electric gaugings here, the results will hold for more general

theories with electromagnetic gauging such as the ones described in [6, 7]. This is due to the fact that

electromagnetic duality rotates the symplectic frame of the general lagrangian of [6, 7] and one can always

find a purely electric frame, where our results hold exactly. Since the spectrum of the theories remains

invariant under symplectic transformations, our results generalize trivially.
2In the lagrangian the graviphoton Ag

µ and vector fields Ai
µ mix between each other and appear as vector

fields AΛ
µ , Λ = 0, . . . , nV , with corresponding field strengths FΛ

µν .
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of motion for the gravitinos we can cast the supercharge into a much simpler form as a

surface integral (see the appendix for the technical details).

The important quantity for our purposes here is the Dirac bracket of two supercharges.

It can be derived from the supercharge (B.4) and takes the remarkably simple form

{Q,Q} =

∮

∂V
dΣµν(ǫ

µνρσεAγρD̃σεA − ǫµνρσεAγρD̃σε
A) , (1.5)

where

D̃µεA =

(
∂µ − 1

4
ωab
µ γab

)
εA +

i

2
AµεA + ωµA

BεB + T−
µνγ

νǫABε
B + igSABγµε

B . (1.6)

Here ωab
µ is the spin connection, Aµ is the gauged U(1) Kähler connection,

Aµ ≡ − i

2

(
∂iK∇µz

i − ∂ῑK∇µz̄
ῑ
)
, (1.7)

and ωµA
B is the gauged Sp(1) connection of the quaternion-Kähler manifold,

ωµA
B ≡ ∂µq

uωuA
B + gAΛ

µP
x
Λ(σ

x)A
B . (1.8)

The quantity T−
µν is the anti-selfdual part of the graviphoton field strength,

T−
µν ≡ 2iFΛ−

µν (IΛΣ)L
Σ , (1.9)

and

SAB ≡ i

2
(σx)ABP

x
ΛL

Λ (1.10)

is the gravitino mass matrix (see appendix A and [9] for more details about special and

quaternion Kähler geometry). Eq. (1.5) is the main general result of this paper. It can be

explicitly evaluated on every spacetime that has an asymptotic Killing spinor.3

Compared with the corresponding expression in the minimal case [1], (1.5) is just a

straightforward generalization. A priori, one could expect some more radical changes due

to the presence of vector and hypermultiplets, but this is not the case. We already see

that the main conclusions of [1] remain the same, with the difference that the definition of

the asymptotic charges will generalize to accommodate for the possibility of non-constant

scalars.4 In order to give more precise statements, we need to plug in the explicit Killing

spinors of interest in the general Dirac bracket (1.5) as described in section 3 of [1].

In the following sections we consider more carefully the cases of Minkowski, AdS4,

and mAdS4 asymptotics, paying special attention to the asymptotic charges in stationary

solutions. In each of the cases we give an explicit example from the study of black holes

3Everywhere in this paper the solutions of D̃µεA = 0 are referred to as Killing spinors. Each independent

Killing spinor signifies the existence of a preserved fermionic isometry, i.e. supersymmetry.
4Note that for a solution with constant scalars (both in the vector and in the hypermultiplet sector) (1.5)

is equivalent with the result for the minimal case. Thus, the only difference between the asymptotic charges

in minimal and non-minimal supergravity lies in the possibility for non-constant scalar profiles.
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as an application of our results. Somewhat surprisingly, we are able to find a very simple

unified formula for the mass of supersymmetric black hole spacetimes in all three cases.

This also leads to a better conceptual understanding of the difference in the mass in AdS

and mAdS spacetimes. We conclude with some remarks on the connection of our results

to alternative approaches in literature and mention other potential uses of our method.

2 Asymptotically flat solutions

2.1 General analysis

Here we will be interested in the superalgebra and asymptotic charges of Minkowski space-

time. In the context of electrically gauged supergravity with vector and hypermultiplets

the necessary conditions for a Minkowski vacuum were derived in [8],

kiΛL̄
Λ = 0 , k̃uΛL

Λ = 0 , P x
Λ = 0 , (2.1)

together with constant scalars, vanishing field strengths and flat R
1,3 metric. These are

now the conditions that asymptotically flat solutions will have to satisfy as r → ∞ (we

always work in spherical coordinates as in [1]).

The Majorana Killing spinors of Minkowski in spherical coordinates are

ǫ̃1,2M = e−
1

2
θγ12e−

1

2
ϕγ23 ǫ̃1,20 , (2.2)

where ǫ̃1,20 are two arbitrary and linearly independent constant Majorana spinors. We will

use the notation ǫ̃A for Majorana spinors and εA, ε
A for the positive/negative chirality

Weyl spinors that are used in our notation. The chiral spinors are related to the Majorana

ones through

εA ≡ 1 + γ5
2

ǫ̃A , εA ≡ 1− γ5
2

ǫ̃A , (εA)
∗ = εA . (2.3)

Having the Killing spinors we can now in principle plug (2.2) in (1.5) and derive the

supercharge anticommutator directly. Of course, we already know the general answer from

the Poincaré superalgebra,

{QAα, QBβ} = δAB(iγMC−1)αβPM − ǫAB((ReZ + iγ5ImZ)(C−1))αβ , (2.4)

where C is the charge conjugation matrix, PM is the momentum operator, and Z is the

complex central extension of the superalgebra. The explicit eigenvalues of the operators PM

and Z for any asymptotically flat solution can be computed now from (1.5). The additional

U(1) and Sp(1) connections in (1.5) from the matter multiplets can potentially lead to

contributions to the supersymmetry anticommutator that are not of the type (2.4). Since

we know that Minkowski asymptotics will necessarily lead to the Poincaré superalgebra

it follows that these additional connections must fall off fast enough so that they do not

contribute. (2.4) can in fact be taken as a definition for asymptotically flat spacetimes. In

practice, the condition for the fall off of the connections will be equivalent with imposing
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the metric to approach Minkowski space. This will be illustrated more clearly with an

explicit example.

In the next subsection we give the explicit expressions for P0,Z in (2.4) for the sta-

tionary case, but one can straightforwardly derive the asymptotic charges in full generality

if needed.

2.2 Stationary solutions

For stationary solutions we find that the supersymmetry anticommutator takes the follow-

ing form:5

{QAα, QBβ} = δAB8πM(iγ0C−1)αβ − ǫAB8π((ReZ + iγ5ImZ)(C−1))αβ , (2.5)

where the complex central charge is given by

Z =
1

4π
lim
r→∞

∮

S2

T− = lim
r→∞

(
LΛqΛ −MΛp

Λ
)
, (2.6)

as derived in detail in [15].6 The derivation of the central charge from (1.5) is a bit

subtle and uses the fact that D̃µεA contains a T−
µν term, while D̃µε

A contains T+
µν . This

eventually leads to
∫
(T−(1 + γ5) + T+(1− γ5)) ∼ ReZ + iγ5ImZ. This calculation picks

out the electric and magnetic charge carried by the graviphoton, which explicitly depend

on the asymptotic values of the vector multiplet scalars.

The mass, on the other hand, remains unaffected by scalars,

M =
1

8π
lim
r→∞

∮
dΣtr

(
et[0e

r
1e

θ
2] + sin θ et[0e

r
1e

ϕ
3] − (ωab

θ e
t
[0e

r
ae

θ
b] + ωab

ϕ e
t
[0e

r
ae

ϕ
b])

)
, (2.7)

just as in the minimal case. The vielbein and spin connection in the above formula can

belong to any stationary asymptotically Minkowski solution of interest, explicit examples

of such configurations can be found in the next subsection.

The BPS bound, as always for stationary asymptotically flat solutions, is

M ≥ |Z| . (2.8)

Note that the hypermultiplet sector seems to be completely decoupled from the above

calculations since the hypers do not influence the asymptotic charges. This suggests that

the stabilization of the hypers at a particular point in moduli space as described in [17]

might be the generic situation in this case.

2.3 Black hole example

Example of asymptotically flat stationary solutions to apply the above formulas are hardly

needed since these have been very well understood. As a standard example we can just

5We rescale the central charges for convenience.
6Note that the charges qΛ and pΛ in (2.6) are the standard electric and magnetic charges as commonly

defined in literature. The electric charges come from the dual field strengths GΛµν ≡ iǫµνρσ
δL

δFΛ
ρσ

. See

e.g. [16, 17] for more details.

– 5 –



J
H
E
P
0
3
(
2
0
1
2
)
0
9
5

briefly glance through the single-centered supersymmetric black holes of [16]. First we

take the most standard case of a static black hole as a warm up for the static examples in

AdS and mAdS. We then also explain the case of a rotating BPS saturated Kerr-Newman

metric, which provides a non-trivial test of the BPS bound (2.8).

The solutions of [16] in ungauged supergravity allow for an arbitrary number of vector

multiplets (and arbitrary hypermultiplets that decouple and will not be considered in what

follows) with arbitrary charges qΛ, p
Λ. The charges only need to satisfy a certain condition

in order to make the metric static (see [16] for more details). The metric and symplectic

sections in spherical coordinates are

ds2 = eK(dt2 + ωdϕ2)− e−Kdr2 − e−Kr2dΩ2
2 ,

2 Im(XΛ) = HΛ = hΛ +
pΛ

r
, 2 Im(FΛ) = HΛ = hΛ +

qΛ
r
,

(2.9)

where hΛ, hΛ are arbitrary constants that decide the asymptotic value of the scalars, usually

chosen such that e−K asymptotes exactly to 1.7 The rotation ω is present only when the

Kähler connection (1.7) is non-vanishing.

Let us consider as a first simple example the prepotential F = − (X1)3

X0 with non-

vanishing magnetic charge p0 and electric charge q1 (also non-vanishing h0, h1). This

implies that X0 = i
2H

0, X1 = 1
2

√
H0H1

3 and e−K = 2
3
√
3

√
H0(H1)3. The U(1) connection

vanishes and therefore the metric is static, ω = 0. To normalize the Kähler potential we

choose h0(h1)
3 = 27

4 and find for the central charge

Z =
1

4

(
p0
h0

+ 3
q1

h1

)
. (2.10)

The mass can be calculated from (2.7) with the metric (2.9) and spin connection ω12
θ =

ω13
ϕ

sin θ = eK/2∂r(re
−K/2) and becomes

M = lim
r→∞

(−r2∂re−K/2) =
1

4

(
p0
h0

+ 3
q1

h1

)
. (2.11)

This illustrates that the above spacetime is supersymmetric since M = |Z|.
A slightly more challenging example is provided if we take the supersymmetric Kerr-

Newman spacetime from section 4.2 of [16]. We will literally consider the same solution,

taken in minimal supergravity with a prepotential F = − i
4(X

0)2, such that e−K = X0X̄0.

In oblate spheroidal coordinates (c.f. (59) of [16]), the harmonic functions that give the

solution are

H0 = 1 +
mr

r2 + α2 cos2 θ
, H0 =

2α cos θ

r2 + α2 cos2 θ
.

Solving for the vector field strengths from this, we find that q0 = m, p0 = 0. This means that

Z = eK/2X0m ⇒ |Z| = m . (2.12)

7One does not really need to stick to a particular choice for hΛ, hΛ. We can always perform a coordinate

transformation to make sure that we have the correct asymptotics at r → ∞. This has exactly the

same effect.
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The Kähler connection (c.f. (1.7)) in this example is in fact non-vanishing, Aθ =
1
2e

K/2(H0∂θH
0−

H0∂θH0). However, it goes as r−2 as r → ∞ and therefore does not contribute to the su-

percharge anticommutator and keeps the Minkowski asymptotics. If we further perform a

redefinition r → r−m, we obtain a stationary supersymmetric metric in the familiar form

ds2 =
(r −m)2 + α2 cos2 θ

r2 + α2 cos2 θ

(
dt2 +

(2mr −m2)α cos2 θ

(r −m)2 + α2 cos2 θ
dϕ2

)
− r2 + α2 cos2 θ

(r −m)2 + α2
dr2

− (r2 + α2 cos2 θ)dθ2 − (r2 + α2 cos2 θ)
(r −m)2 + α2

(r −m)2 + α2 cos2 θ
sin2 θdϕ2 ,

(2.13)

which is the Kerr-Newman metric with equal mass and charge, leading to a nakedly singular

rotating asymptotically flat spacetime. The mass can be again found by

M = . . . = lim
r→∞

(−r2∂re−K/2) = m = |Z| , (2.14)

after converting back to spherical coordinates.8 This confirms that the Kerr-Newman

metric (2.13) is supersymmetric and that the angular momentum, J = αm, indeed does

not enter in the BPS bound (2.8) and remains unconstrained by supersymmetry.

3 AdS4 asymptotics

3.1 General analysis

The necessary conditions for AdS4 vacuum, derived in [8], are:

kiΛL̄
Λ = 0 , k̃uΛL

Λ = 0 (3.1)

P x
Λf

Λ
i = 0 , ǫxyzP y

ΛP
z
ΣL

ΛL̄Σ = 0 ,

with constant scalars, vanishing field strengths FΛ
µν = 0 and AdS4 metric with cosmolog-

ical constant9 Λ ≡ −3g′2 = −3g2P x
ΛP

x
ΣL

ΛL
Σ
. (3.1) will have to hold at r → ∞ for all

asymptotically AdS spacetimes, together with the usual conditions on the metric [1]. Note

that we do not allow for asymptotic magnetic charge for the graviphoton, i.e. P x
ΛA

Λ
ϕ = 0.

Unlike in the minimal case, this does not rule out the existence of magnetic charges but

only restricts them.

The last condition in (3.1) tells us that the P x
ΛL

Λ’s are restricted in a certain way. We

will assume that they are aligned in one particular direction asymptotically10 (direction a),

i.e. only P a ≡ P a
ΛL

Λ 6= 0. The Majorana Killing spinors for AdS were derived in [1, 18],

ǫ̃1,2AdS = e
i
2
arcsinh(g′r)γ1e

i
2
g′tγ0e−

1

2
θγ12e−

1

2
ϕγ23 ǫ̃1,20 , (3.2)

8Eq. (2.14) holds also in the given set of Boyer-Lindquist coordinates, but in order to use (2.7) one needs

to first convert the relevant asymptotic quantities in spherical coordinates.
9Λ is the cosmological constant of pure AdS4 with constant scalars. The curvature of all asymptotic

AdS solutions will approach this value as r → ∞. The reason for defining g′ is because the AdS Killing

spinors explicitly contain this constant instead of the gauge coupling constant g.
10P x

≡ P x
ΛL

Λ rotates under Sp(1) ≃ SU(2) and can always be put in a particular direction. This however

does not mean that existing solutions in literature will automatically be written in such a way.
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where it was implicitly assumed that a = 2 for the gauging in the minimal case. The end

result for the supercharge anticommutator will of course not depend on which direction

for the moment maps is chosen, but when a = 2 the Killing spinors (the chiral ones can

again be found using (2.3)) take the simplest form. In the explicit formulas for the asymp-

totic charges it is clear how to leave the choice for the direction a completely arbitrary.

The basic anticommutator for asymptotically AdS solutions can be again derived directly

using the chiral version of (3.2) in (1.5). The result takes the expected form from the

OSp(2|4) superalgebra,

{QAα, QBβ} = δAB(γ̂MNC−1)αβMMN − ǫABT (C−1)αβ , (3.3)

as discussed in detail in sections 3.1 and 4.1 of [1]. Here we also require that the U(1)

and Sp(1) gauged conections in (1.5) fall off fast enough as r → ∞ in order to precisely

recover the above expression. (3.3) can be taken as a definition of asymptotically AdS

spacetimes. Any spacetime, whose Dirac bracket (1.5) does not simplify to (3.3) is therefore

not asymptotically AdS. In the explicit example that follows the fall off will already be

of the correct type, but in principle one needs to always make sure that the spacetime in

question really is asymptotically AdS in the sense of (3.1) and (3.3). Each of the asymptotic

charges MMN and T can be explicitly derived, but we will again concentrate on the mass

and charge in the stationary case.

3.2 Stationary solutions

Now we consider any stationary asymptotically AdS4 solution (see the next subsection for

an explicit example). For asymptotically AdS solutions with vanishing magnetic charge

limr→∞ P x
Λp

Λ = 0, the supersymmetry anticommutator is11

{QAα, QBβ} = δAB8π((Mγ0 + g′Jijγ
ij)C−1)αβ − ǫAB8πT (C−1)αβ , (3.4)

with12

M =
1

8π
lim
r→∞

∮
dΣtr

(
et[0e

r
1e

θ
2] + sin θ et[0e

r
1e

ϕ
3]

+ 2gg′r|P a
ΛL

Λ| et[0er1] −
√
g′2r2 + 1(ωab

θ e
t
[0e

r
ae

θ
b] + ωab

ϕ e
t
[0e

r
ae

ϕ
b])

)
,

(3.5)

and

T =
1

4π
lim
r→∞

∮

S2

Re
(
T−) = lim

r→∞
Re
(
LΛqΛ −MΛp

Λ
)
. (3.6)

The angular momenta Jij remain exactly as given in appendix C of [1], unaffected directly

by the scalars. The BPS bound is given by

M ≥ |T |+ g′| ~J | . (3.7)

Note that the scalars enter explicitly in the definition of the mass (3.5), unlike for the

asymptotically flat solutions.

11Again, the supercharges are rescaled for convenience.
12Note that the following expression includes both the gauge coupling constant g and the asymptotic

cosmological constant g′.
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3.3 Static example

Here we will explicitly consider the static supersymmetric spacetimes with non-constant

scalars constructed by Sabra in [19].13 Unlike in the asymptotically flat case, one cannot

easily find what the mass is just from looking at the metric.

Briefly summarized, the solution of [19] is in a FI gauged supergravity with constant

parameters P a
Λ = ξΛ and an arbitrary number of vector multiplets. The solutions are purely

electric with arbitrary charges qΛ. The metric and symplectic sections are

ds2 = eK
(
1 + g2r2e−2K) dt2 − e−Kdr2

(1 + g2r2e−2K)
− e−Kr2dΩ2

2 ,

ImXΛ = 0, 2 ImFΛ = HΛ = ξΛ +
qΛ
r
.

(3.8)

It is immediately clear that the charge T of this configuration will be

T = lim
r→∞

Re
(
LΛqΛ −MΛp

Λ
)
= lim

r→∞
LΛqΛ = eK(ξ)/2XΛ(ξ)qΛ , (3.9)

where K(ξ), XΛ(ξ) denote the corresponding asymptotic values that will only depend on

the gauge parameters via the second row of (3.8). Since the solutions are supersymmetric

and static (Jij = 0) it follows that the mass takes the exact same value as the charge T .

We can show this explicitly for any given solution.

Let us for simplicity take the prepotential F = −2i
√
X0(X1)3 with electric charges

q0, q1 and FI parameters ξ0, ξ1. The sections are therefore X0 = 1
6
√
3

√
(H1)3

H0
, X1 =

1
2
√
3

√
H0H1 with e−K = 2

3
√
3

√
H0(H1)3 and g′ = 21/2

33/4
g(ξ0(ξ1)

3)1/4. The asymptotic charge

T from (3.9) becomes

T =
(ξ0(ξ1)

3)1/4

23/233/4

(
q0
ξ0

+ 3
q1
ξ1

)
. (3.10)

In order to find the mass of this configuration we first need to perform a simple coor-

dinate rescaling to make sure that the metric asymptotes to AdS in spherical coordinates

(equivalently we could insist that e−K asymptotes to 1). Transforming r → ar, t → t/a,

with a = limr→∞ e−K/2 = 21/2

33/4
(ξ0(ξ1)

3)1/4 we achieve

ds2 =
(
a2eK + g2r2e−K) dt2 − dr2

(a2eK + g2r2e−K)
− e−K

a2
r2dΩ2

2 , (3.11)

which exactly asymptotes to AdS with cosmological constant −3g′2 in spherical coor-

dinates. The functions that further define the metric now take the form H0 = ξ0 +
aq0
r , H1 = ξ1 +

aq1
r . The relevant spin connection components in this case are ω12

θ =
ω13
ϕ

sin θ =√
a2eK + g2r2e−K∂r(

re−K/2

a ). Now we can use (3.5) to find the mass of this configuration:

M = lim
r→∞

e−K/2

a2
r2
(
a

r
+ gg′r(ξ0X

0+ξ1X
1)− 1

r

√
g′2r2+1

√
a2eK + g2r2e−K∂r(re

−K/2)

)

= . . . =
(ξ0(ξ1)

3)1/4

23/233/4

(
q0
ξ0

+ 3
q1
ξ1

)
= T , (3.12)

13These are the most general static BPS configurations that have been constructed so far in AdS. Strictly

speaking, they do not correspond to black holes but rather to naked singularities due to the absence of an

event horizon.
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as expected. This is a rather non-trivial check that (3.5) gives the correct expression for the

AdS mass, and therefore reproduces correctly results from holographic renormalization [2–

5]. Interestingly, we note that in the process of simplifying the above formula, in “. . .” one

finds the mass to be

M = lim
r→∞

(−r
2

a
∂re

−K/2) =
(ξ0(ξ1)

3)1/4

23/233/4

(
q0
ξ0

+ 3
q1
ξ1

)
, (3.13)

i.e. picking the first subleading term of the Kähler potential after normalizing it to asymp-

tote to 1. This simple formula turns out to give the mass for the static solutions both in

Minkowski (c.f. (2.11) and (2.14)) and in AdS. We now turn to magnetic AdS asymptotics

and show that the same formula effectively gives the mass also for supersymmetric solutions

in mAdS.

4 mAdS4 asymptotics

4.1 General analysis

Magnetic AdS (or mAdS) was recently introduced as a concept in [1]. Many features of

it are similar to the purely AdS case, but due to the presence of magnetic charges mAdS

preserves less supersymmetry. The asymptotic conditions on the spacetime remain as

in (3.1) with constant scalars, only now the magnetic field strengths are 2FΛ
θϕ = pΛ sin θ

under the restriction 2gP a
Λp

Λ = ∓1 coming from Dirac quantization.14 As before, we have

the redefinition of the cosmological constant to be Λ ≡ −3g′2 and assume the moment map

in direction P a to be non-zero.

For a = 2, the Killing spinors of mAdS4 were given in [1, 20]. Here we can give the

projections obeyed by the chiral Killing spinors as straightforward generalization of the

analysis in [21]:

εmAdS,A = eiα ǫABγ
0εBmAdS , εmAdS,A = ±eiα σaAB γ1 εBmAdS , (4.1)

where α is an arbitrary constant phase, and the choice of sign of the second projection

corresponds to the choice of sign for the charge quantization condition. The functional

dependence of the Killing spinors can also be found in [21] - it is only radial,
√
g′r + g′

2g2r
.

This can be seen explicitly by analyzing the Killing spinor equation D̃µεA = 0. Solving

it also forces all asymptotically mAdS spacetimes to satisfy P a
ΛX

Λ = ±1, 4geKFΛp
Λ = ±1

as r → ∞.

For asymptotically mAdS solutions with non-vanishing magnetic charge, the super-

symmetry anticommutator is just

{QI , QJ} = δIJ8πM , (4.2)

14Note that there is a mismatch of a factor of 2 between the charges here and in the previous sections. It

can be traced back to the different conventions used in [20] and [21] and is compensated for in all formulas

of this section.
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with only two supercharge singlets as discussed in detail in section 4.2 of [1]. The mass is

given by explicitly plugging (4.1) in (1.5) for any asymptotically mAdS solution. Just as

in [1], it turns out that the expression takes more convenient form if we choose an upper

triangular vielbein:

M =
1

8π
lim
r→∞

∮
dΣtr

(
g′r +

g′

2g2r

)(
2 Im

(
LΛqΛ −MΛp

Λ
)
sin θ et0e

r
1e

θ
2e

ϕ
3

+ 2g|P a
ΛL

Λ| et0er1 − (ω12
θ e

t
0e

r
1e

θ
2 + ω13

ϕ e
t
0e

r
1e

ϕ
3 )

)
,

(4.3)

The BPS bound in this case is simply

M ≥ 0 . (4.4)

Note that there is a crucial difference between the AdS and the mAdS masses since the

scalars enter differently in the expressions, e.g. in the first term on the r.h.s. of (4.3). We

will see in the next subsection that this ultimately leads to a different notion of the mass

in the two cases and that the standard holographic renormalization technique is equivalent

to the mass definition (3.5), but does not reproduce correctly (4.3).

4.2 Black hole example

Here we concentrate on the static supersymmetric black holes with magnetic charges, found

recently by [22] and generalized by [21, 23]. The theory is again FI gauged supergravity

with an arbitrary number of vector multiplets and gaugings ξΛ. The magnetic charges are

restricted by the equation 2gξΛp
Λ = 1,15 and the metric and scalars are given by

ds2 = eK
(
gr +

c

2gr

)2

dt2 − e−Kdr2
(
gr + c

2gr

)2 − e−Kr2dΩ2
2 ,

ReXΛ = HΛ = αΛ +
βΛ

r
, ReFΛ = 0 ,

ξΛα
Λ = −1 , ξΛβ

Λ = 0 ,

FΛ

(
−2g2rβΛ + cαΛ + 2gpΛ

)
= 0 .

(4.5)

If we evaluate the mass of this solutions from (4.3) we get the supersymmetric valueM = 0.

To see this in some detail, let us again consider the simplest case of prepotential

F = −2i
√
X0(X1)3 that was also discussed carefully in section 7.1 of [21]. We have

X0 = H0 = α0 + β0

r , X
1 = H1 = α1 + β1

r and e−K = 8
√
H0(H1)3, with

β0 = −ξ1β
1

ξ0
, α0 = − 1

4ξ0
, α1 = − 3

4ξ1
, c = 1− 32

3
(gξ1β

1)2 , (4.6)

and magnetic charges

p0 =
1

gξ0

(
1

8
+

8(gξ1β
1)2

3

)
, p1 =

1

gξ1

(
3

8
− 8(gξ1β

1)2

3

)
. (4.7)

15We just choose the positive sign here without any loss of generality.
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We again need to rescale t and r in order to have the metric asymptote to mAdS in spherical

coordinates just as above: r → ar, t → t/a, with a = limr→∞ e−K/2 = 21/2

33/4
(ξ0(ξ1)

3)1/4 and

cosmological constant coming from g′ = 33/4

21/2
(ξ0(ξ1)

3)−1/4. The metric is then

ds2 = eK
(
gr +

a2c

2gr

)2

dt2 − e−Kdr2
(
gr + a2c

2gr

)2 − e−K

a2
r2dΩ2

2 , (4.8)

and H0 = α0 + aβ0

r , H1 = α1 + aβ1

r . Evaluating (4.3) now gives

M = lim
r→∞

e−K/2

a2
r2
(
g′r +

g′

2g2r

)
×

×
(
g − 2a2eK

r2
(F0p

0 + F1p
1)− eK/2

r

(
gr +

a2c

2gr

)
∂r(re

−K/2)

)
= 0 . (4.9)

We are now in position to compare this result with the one obtained via the holographic

renormalization techniques of [2–5, 24]. As found in section 9 of [21], the mass of the above

black holes is non-vanishing if one uses the explicit formulas provided in [24] based on the

procedure of holographic renormalization [2–5]. In fact these formulas give the same result

as if (3.5) were used, i.e. the holographic renormalization procedure does not consider the

case of magnetic AdS asymptotics separately. It is then fair to conclude that holographic

renormalization is well defined for the asymptotically AdS spacetimes of section 3, but one

should not use this technique for asymptotically mAdS cases.

Remarkably, the effective formula that worked in the static cases for Minkowski and

AdS (see (2.11) and (3.13)) turns out to give the correct result once again,

M = lim
r→∞

(
− r2

a
∂re

−K/2

)
= 0 . (4.10)

Although the fundamental mass formulas (2.7), (3.5) and (4.3) are a priori considerably

different, it turns out that the corresponding supersymmetric solutions have such properties

that in each case the mass reduces to exactly the same simple formula.

5 Final remarks

To summarize, the main results of our work are the general mass formulas (2.7), (3.5),

and (4.3) for asymptotically flat, AdS, and mAdS spacetimes, respectively. We confirmed

the well-known result [15] for the central charge in Minkowski, showing that the hyper-

multiplets do not alter it. We also showed that supergravity does make a clear distinction

between masses in AdS and mAdS. Our analysis in AdS generalizes some previous works

that did not allow for non-trivial scalars, e.g. [25]. The results for asymptotically AdS

solutions are in fact equivalent to performing the procedure of holographic renormaliza-

tion [2–5, 24], i.e. (3.5) can be directly used in AdS/CFT applications. In the asymptotically

mAdS case, to our best knowledge, (4.3) provides the only correct definition of mass in

literature. Physically, the mass formula in mAdS might seem a bit counter-intuitive as it
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allows for black hole solutions with vanishing mass. However, from the point of view of

the superalgebra this is the only possibility for BPS objects in mAdS. Therefore M = 0

should not come as a surprise for the static magnetic black holes of [21, 22].

It is important to observe that the scalar profiles as functions of the radial coordinate

enter explicitly in the mass formulas (3.5) and (4.3). Thus, the AdS and mAdS masses not

only depend on the asymptotic values of the scalars, but also on how the scalars approach

these values. This feature provides a new point of view towards the attractor mechanism

in AdS/mAdS. It shows that scalars are much more restricted to behave in a particular

way in comparison with the Minkowski case. Nevertheless, for the supersymmetric so-

lutions it turned out that the mass can be described by the same formula in all three

asymptotic vacua,

M = lim
r→∞

(
− r2

a
∂re

−K/2

)
, (5.1)

where a ≡ limr→∞ e−K/2 is usually chosen to be 1. This essentially means that the mass

is the first subleading term of the Kähler potential expansion, no matter what the details

of the solution and its asymptotics are. It will be interesting to understand the physical

reasons behind this.

Finally, we note that the supercharge anticommutator (1.5) can also be used to describe

other asymptotic vacua in gauged supergravity. Examples of potential use are in asymp-

totically Lifshitz spacetimes (a supersymmetric Lifshitz vacuum was found in [26, 27]) or

in solutions with AdS2 × S2 asymptotics.
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A Details on D = 4 N = 2 gauged supergravity

Here we will give more details on the theory in consideration. Alternatively, see [9] for

a very detailed description. The bosonic part of the supergravity lagrangian was given

in (1.3)–(1.4). The supersymmetry variations under which the full action is invariant

(upto higher order terms in fermions) are as follows. The gravitino variation is

δεψµA = D̃µεA , (A.1)

with a supercovariant derivative D̃ as defined in (1.6). The corresponding vielbein varia-

tion reads

δεe
a
µ = −iψµAγ

aεA − iψ
A
µ γ

aεA . (A.2)

Note that ψµA ≡ iψA
µ
†γ0 in order to keep the correct chirality16 (this holds similarly for all

the conjugate (anti-) chiral spinors). In the vector multiplet sector (we will also consider

16We use the notation χA, χ
A for positive/negative chirality spinors that are related to each other by

complex conjugation.
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the graviphoton here) we have the gaugino variation

δελ
iA = i∇µz

iγµεA +G−i
µνγ

µνǫABεB + gW iABεB , (A.3)

where ∇µz
i denotes the gauge covariant derivative of the complex scalars (when isometries

kiΛ of the Kähler manifold are being gauged), Gi
µν are the field strengths of the vectors

from the vector multiplets, and W iAB is the gaugino mass matrix,

W iAB ≡ kiΛL̄
ΛǫAB + igīf̄Λ̄ P

x
Λσ

AB
x . (A.4)

The mass matrix also includes the quaternionic moment maps P x
Λ from the hypermultiplet

gauging,17 together with LΛ = eK/2XΛ (in analogy, MΛ ≡ eK/2FΛ) and their derivatives

fΛi ≡ eK/2DiX
Λ. They are defined in terms of the holomorphic sections XΛ, FΛ of special

geometry and the Kähler potential

K(z, z̄) = − ln
[
i(X̄Λ(z̄)FΛ(z)−XΛ(z)F̄Λ(z̄))

]
. (A.5)

Another important special Kähler quantity is the period matrix,

NΛΣ ≡
(
DiFΛ

F̄Λ

)
·
(
DiX

Σ

X̄Σ

)−1

, (A.6)

with RΛΣ ≡ ReNΛΣ, IΛΣ ≡ ImNΛΣ. All these quantities are also explained in more details

in [8] where the analysis of fully supersymmetric vacua was accomplished. The bosonic

susy variations in the vector multiplet sector are

δεz
i = λ

iA
εA , (A.7)

and

δεA
Λ
µ = 2L̄ΛψµAεBǫ

AB + ifΛi λ
iA
γµε

BǫAB + h.c. . (A.8)

Finally, in the hypermultiplet sector, the hyperino variation is

δεζα = iUBβ
u ∇µq

uγµεAǫABCαβ + gNA
α εA , (A.9)

with the vielbein UAα
u of the quaternionic metric huv, the gauge covariant derivative of

the hypers ∇µq
u (when gauging isometries k̃uΛ of the quaternion Kähler manifold), and the

hyperino mass matrix

NA
α ≡ 2UA

αuk̃
u
ΛL̄

Λ . (A.10)

The susy variation of the hypermultiplet scalars (hypers) is

δεqu = UAα
u

(
ζαε

A + C
αβǫABζ

β
εB

)
. (A.11)

In order to derive the supercharge of the theory from the procedure described in

section 2 of [1], we additionally need the Poisson/Dirac brackets of the fundamental fields.

17Note that in the absence of hypermultiplets, the quaternionic moment maps P x
Λ can be non-vanishing

constants, called FI parameters and usually denoted with ξΛ
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It will suffice to list the non-vanishing fermionic Dirac brackets that follow from the full

lagrangian18 (see e.g. [9]):

{ψµA(x), ǫ
0νρσψ

B
ρ (x

′)γσ}t=t′ = δµ
νδA

Bδ3(~x− ~x′) ,

{λiA(x),−
i

2
gk̄λ

B̄
(x′)γ0}t=t′ = δA

Bδk
iδ3(~x− ~x′) ,

{ζα(x),−iζβ(x′)γ0}t=t′ = δα
βδ3(~x− ~x′) .

(A.12)

The conventions about metric signatures, gamma matrices, (anti-)selfdual tensors that we

use in this paper can be found in some previous papers [8, 17, 21]. Note in particular that

we follow the conventions for ǫµνρσ of [8]. Consequently, we define as a measure for the

volume/surface integrals

dΣµ =
1

6
ǫµνρσ dx

ν ∧ dxρ ∧ dxσ , dΣµν =
1

2
ǫµνρσ dx

ρ ∧ dxσ , (A.13)

which are defined differently in [1].

B Supersymmetry charge

From the susy variations one can fix uniquely the supersymmetry charge Q by the require-

ment that

δǫφ = {Q, φ}, (B.1)

for all fundamental fields (here denoted by φ) in the theory. From (A.1)–(A.11), together

with the Dirac brackets (A.12), one finds

Q =

∫

V
dΣµ

[
ǫµνρσψ

A
ν γρD̃σǫA + h.c.

− igīλ
̄
Aγ

µ(i∇νz
iγνεA +G−i

νργ
νρǫABεB + gW iABεB ) + h.c.

− iζ
α
γµ(iUBβ

u ∇νq
uγνεAǫABCαβ + gNA

α εA ) + h.c.
]
,

(B.2)

up to higher order in fermions. The expression for the supercharge simplifies considerably

when evaluated on shell, due to the very suggestive form of the equations of motion of the

gravitinos:

ǫµνρσγνD̃ρψσA = gī(∇µz̄ ̄λiA −∇νz
iγµνλ̄A)− igī(G

+̄
µνγ

νǫABλ
iB + gW i

ABγ
µλ̄B)

− (UBβ
u ∇µquǫABCαβ − UBβ

u ∇νq
uγµνǫABCαβ + igNαAγ

µ)ζα .
(B.3)

After performing a partial integration of the first term on the r.h.s. of (B.2) and using (B.3),

the supercharge becomes a surface integral:

Q e.o.m.
=

∮

∂V
dΣµνǫ

µνρσ
(
ψ
A
σ γρεA − ψσAγρε

A
)
, (B.4)

similarly to (2.26) in [1] in the minimal case.

18The brackets for the bosonic fields can be derived directly from (1.3) if needed.
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[14] R. D’Auria, S. Ferrara and P. Frè, Special and quaternionic isometries: general couplings in

N = 2 supergravity and the scalar potential, Nucl. Phys. B 359 (1991) 705 [INSPIRE].

[15] A. Ceresole, R. D’Auria and S. Ferrara, The symplectic structure of N = 2 supergravity and

its central extension, Nucl. Phys. Proc. Suppl. 46 (1996) 67 [hep-th/9509160] [INSPIRE].
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