12 research outputs found

    Consequences of dewatering for aquatic plant communities and the functioning of riverine wetlands

    No full text
    L'objectif de cette thèse a été de mesurer comment les modifications des régimes hydrologiques, plus particulièrement les exondations, régissent 1) certains aspects du fonctionnement des zones humides, 2) l'organisation et la dynamique à court terme des communautés végétales aquatiques et 3) la survie et la réponse plastique des végétaux aquatiques. Cette thèse aborde les questions à des échelles spatio-temporelles différentes. Premièrement, à l'échelle de la décennie, j'ai mesuré la conséquence de la baisse de la hauteur d'eau des zones humides péri-fluviales sur leur physico-chimie. Deuxièmement, à l'échelle de la saison, j'ai mesuré l'influence des caractéristiques sédimentaires des zones humides sur la réponse à court terme des communautés végétales à l'exondation. Enfin, à l'échelle de quelques semaines, je me suis intéressée à l'aptitude des espèces d'angiospermes aquatiques à mettre en place un ajustement plastique face à l'exondation, en conditions expérimentales de laboratoire et in situ, j'ai recherché les déterminismes de cette réponse (écologiques, morphologiques, phylogénétiques). En termes de caractéristiques physico-chimiques des eaux de surface, l'étude sur 15 ans de la dynamique de zones humides péri-fluviales subissant des exondations, ne conclue pas, comme cela est habituellement décrit dans la littérature, à une augmentation de la teneur en nutriments de la masse d'eau, mais plutôt des changements suggérant des variations du fonctionnement hydrogéologique des zones humides, en faveur d'une plus grande influence de la nappe de versant dans leur alimentation. La réponse in situ des communautés végétales à l'exondation diffère selon le type de sédiment. La résistance et la résilience des communautés décroissent toutes deux avec la capacité de rétention d'eau du sédiment. La capacité des plantes aquatiques à tolérer l'exondation, en conditions expérimentales, semble différer selon leur position phylogénétique, mais pas selon leur forme de croissance (rosettes ou caulescentes)The objective of this thesis was to measure how changes in hydrological regimes, particularly dewatering govern 1) aspects of the functioning of wetlands, 2) the organization and short-term dynamics of aquatic plant communities and 3 ) survival and plastic response of aquatic plants. This thesis addresses issues at different spatial and temporal scales. First, at the decade scale, I measured the effect of water-level decreases in riverine wetlands on their physico-chemistry characteristics. Second, at the season scale, I measured the influence of sedimentary characteristics of wetlands on short-term response of plant communities to dewatering. Finally, at the scale of a few weeks, I was interested in the ability of aquatic angiosperm species to develop a plastic adjustment to dewatering, in experimental laboratory conditions and in situ, and I looked determinism of this response (ecological, morphological, phylogenetic). In terms of physico-chemical characteristics of surface waters, the 15- year study of the dynamics of riverine wetlands undergoing dewatering, not reached, as is usually described in the literature, with an increase of water body nutrient contents, but rather changes suggesting variations of the hydrogeological functioning of wetlands in favor of a greater influence of the hillslope groundwater table in their water supply. In situ response of plant communities to dewatering differs according to sediment type. Both, resistance and resilience of communities decrease with the sediment water retention capacity. The ability of aquatic plants to tolerate dewatering, in experimental conditions, seems to differ according to their phylogenetic position, but not according to their growth form (rosettes or caulescentes). Species tolerating dewatering show phenotypic adjustments such as denser aerial organs and high plasticity of the leaves, which may explain the maintenance of a similar growth rate in terrestrial and aquatic conditions in these specie

    Conséquences des exondations pour les communautés végétales aquatiques et le fonctionnement des zones humides fluviales

    No full text
    The objective of this thesis was to measure how changes in hydrological regimes, particularly dewatering govern 1) aspects of the functioning of wetlands, 2) the organization and short-term dynamics of aquatic plant communities and 3 ) survival and plastic response of aquatic plants. This thesis addresses issues at different spatial and temporal scales. First, at the decade scale, I measured the effect of water-level decreases in riverine wetlands on their physico-chemistry characteristics. Second, at the season scale, I measured the influence of sedimentary characteristics of wetlands on short-term response of plant communities to dewatering. Finally, at the scale of a few weeks, I was interested in the ability of aquatic angiosperm species to develop a plastic adjustment to dewatering, in experimental laboratory conditions and in situ, and I looked determinism of this response (ecological, morphological, phylogenetic). In terms of physico-chemical characteristics of surface waters, the 15- year study of the dynamics of riverine wetlands undergoing dewatering, not reached, as is usually described in the literature, with an increase of water body nutrient contents, but rather changes suggesting variations of the hydrogeological functioning of wetlands in favor of a greater influence of the hillslope groundwater table in their water supply. In situ response of plant communities to dewatering differs according to sediment type. Both, resistance and resilience of communities decrease with the sediment water retention capacity. The ability of aquatic plants to tolerate dewatering, in experimental conditions, seems to differ according to their phylogenetic position, but not according to their growth form (rosettes or caulescentes). Species tolerating dewatering show phenotypic adjustments such as denser aerial organs and high plasticity of the leaves, which may explain the maintenance of a similar growth rate in terrestrial and aquatic conditions in these speciesL'objectif de cette thèse a été de mesurer comment les modifications des régimes hydrologiques, plus particulièrement les exondations, régissent 1) certains aspects du fonctionnement des zones humides, 2) l'organisation et la dynamique à court terme des communautés végétales aquatiques et 3) la survie et la réponse plastique des végétaux aquatiques. Cette thèse aborde les questions à des échelles spatio-temporelles différentes. Premièrement, à l'échelle de la décennie, j'ai mesuré la conséquence de la baisse de la hauteur d'eau des zones humides péri-fluviales sur leur physico-chimie. Deuxièmement, à l'échelle de la saison, j'ai mesuré l'influence des caractéristiques sédimentaires des zones humides sur la réponse à court terme des communautés végétales à l'exondation. Enfin, à l'échelle de quelques semaines, je me suis intéressée à l'aptitude des espèces d'angiospermes aquatiques à mettre en place un ajustement plastique face à l'exondation, en conditions expérimentales de laboratoire et in situ, j'ai recherché les déterminismes de cette réponse (écologiques, morphologiques, phylogénétiques). En termes de caractéristiques physico-chimiques des eaux de surface, l'étude sur 15 ans de la dynamique de zones humides péri-fluviales subissant des exondations, ne conclue pas, comme cela est habituellement décrit dans la littérature, à une augmentation de la teneur en nutriments de la masse d'eau, mais plutôt des changements suggérant des variations du fonctionnement hydrogéologique des zones humides, en faveur d'une plus grande influence de la nappe de versant dans leur alimentation. La réponse in situ des communautés végétales à l'exondation diffère selon le type de sédiment. La résistance et la résilience des communautés décroissent toutes deux avec la capacité de rétention d'eau du sédiment. La capacité des plantes aquatiques à tolérer l'exondation, en conditions expérimentales, semble différer selon leur position phylogénétique, mais pas selon leur forme de croissance (rosettes ou caulescentes

    Sediment type rules the response of aquatic plant communities to dewatering in wetlands

    No full text
    International audienceQuestionsThe effect of dewatering on aquatic plant communities may vary with sediment properties, such as particle size and organic matter content, as both control water retention in the sediment during dewatering. No study has tested how sediment type affects the short-term response of plant communities to dewatering. We hypothesized that for the same dewatering event: (1) organic, silt and coarse sediments rank along a gradient of water deficit, with which community resistance and resilience decrease; (2) species survival during the event depend on their known ecological affinity for water; and (3) a peak in species richness associated with an intermediate water deficit occurs in silty habitats.LocationRiverine wetlands in the floodplain of the Ain River, France.MethodsEighteen sampling units were defined, set over three sediment types: gravel-dominated coarse sediment, silt and organic matter-dominated sediment. For each sediment type, three sampling units were permanently aquatic, and three sampling units underwent summer dewatering. A survey of species cover was conducted in each sampling unit at four times: before summer dewatering, at the beginning of the event, at the end of the event and 2months after rewetting. Community resistance and resilience were assessed, as were changes over time in the proportions of species according their water affinity (hydrophytes, amphiphytes and helophytes, documented from the floras), and the effect of dewatering on species renewal and richness.ResultsThe sediment type affected aquatic plant community resistance and resilience, with increasing disturbance intensity for silty, followed by coarse compared with organic sediment. Organic sediment retained water efficiently during dewatering, supporting high community resistance, with the maintenance of amphiphytes and more tolerant hydrophytes. On silty sediment, disturbance was sufficiently high to cause the disappearance of hydrophyte vegetative parts, but propagules rapidly sprouted after rewetting, suggesting their preservation in the sediment and enabling good community resilience. On coarse sediment, a decrease in resident amphiphyte abundance, together with helophyte colonization and maintenance after rewetting were observed. Coarse sediment is not favourable to propagule survival, explaining the low community resilience. Contrary to our hypothesis, a linear positive relationship between disturbance intensity and species richness was observed after dewatering.ConclusionThe present study demonstrates that a simple description of sediment type allows prediction of dewatering impact on aquatic plant communities: organic, silt and coarse sediments were ranked along a gradient of water deficit, along which resistance and resilience decreased

    Using Microwave Soil Heating to Inhibit Invasive Species Seed Germination

    No full text
    International audienceSuccessful invasive plant eradication is rare, because the methods used target the adult stage, not taking into account the development capacity of a large seedbank. Heating by microwave was considered, because it offers a means to quickly reach the temperature required for loss of seed viability and inhibition of germination. Previous results were not encouraging, because homogeneous and deep-wave penetration was not achieved, and the various parameters that can affect treatment effectiveness were incompletely addressed. This study aimed to determine, under experimental conditions, the best microwave treatment to inhibit invasive species seed germination in terms of power (2, 4, 6 kW) and duration (2, 4, 8 min) of treatments and depending on soil moisture (10%, 13%, 20%, 30%) and seed burial depth (2, 12 cm). Three invasive species were tested: Bohemian knotweed, giant goldenrod, and jimsonweed. The most effective treatments required relatively high power and duration (2kW8min, 4kW4min, 6kW2min, and 6kW4min; 4kW8min and 6kW8min were not tested for technical reasons), and their effectiveness diminished with increasing soil moisture with germination percentage between 0% and 2% for the lowest soil moisture, 0% and 56% for intermediate soil moisture, and 27% and 68% in control treatments. For the highest soil moisture, only 2kW8min and 4kW4min reduced germination percentage between 2% and 19%. Occasionally, germination of seeds located at the 12-cm depth was more strongly affected. Giant goldenrod seeds were the most sensitive, probably due to their small size. Results are promising and justify further experiments before developing a field microwave device to treat large volumes of soil infested by invasive seed efficiently and with reasonable energy requirements. Other types of soil, in terms of texture and organic matter content, should be tested in future experiments, because these factors influence soil water content and, consequently, microwave heating

    Physico-Chemical Consequences of Water-Level Decreases in Wetlands

    No full text
    International audienceDue to global change, many wetlands experience water level decreases and changes in their hydrological func- tioning, modifying their physico-chemical characteristics. Riverine wetlands are particularly complex within this frame- work because they are supplied by different water sources. This study assessed how long-term water level decreases in riverine wetlands relate to changes in their physico-chemical characteristics (temperature, oxygen, pH, conductivity and nutrient contents: nitrate, ammonium and phosphate). We hy- pothesized that 1) water level decreases have no effect on water nutrient contents because of the high water renewal by groundwater supplies, which may leach nutrients released from the sediment after the dewatering phase, and 2) the physico-chemical characteristics of the water would become increasingly similar to those of hillslope groundwater due to the increase in their water supplies in wetlands. We compared the surface water physico-chemical characteristics of nine riv- erine wetlands with contrasting water level decreases between 1993 and 2011. No increase in water nutrient contents oc- curred. However, depending on the wetland considered, the physico-chemical changes suggested either 1) increased con- nectivity with hillslope groundwater, 2) a lower rate of water renewal in wetlands or 3) increased river water supplies, po- tentially related to river lateral migration toward wetlands

    Genetic temporal dynamics in restored wetlands : A case of a predominantly clonal species, Berula erecta (Huds.) Coville

    No full text
    International audienceGenetic variability is a key component of biodiversity. Therefore, the health of populations that colonise restored ecosystems depends on maintaining a level of genetic diversity similar to what is found in unre- stored and healthy populations. Wetland restoration occurs frequently, but genetic monitoring rarely considers the genetic variability of species that grow spontaneously in restored ecosystems as a marker of overall ecological restoration success. In this study, the temporal dynamics of genetic variability in an aquatic pioneer plant species, Berula erecta (Hudson) Coville (Apiaceae), were assessed based on an anal- ysis of 12 different microsatellite markers. We hypothesised that vegetative propagation was enhanced by restoration and consequently tended to decrease clonal richness and to stabilise genetic diversity. Several genetic and genotypic indices were surveyed over five years in three restored and two reference sites. An assessment of the breeding system in this population suggested that B. erecta was an ISR (initial seedling recruitment) species; for this type of species, disturbances caused by dewatering permitted an increase in the level of genetic diversity. The results suggested that there were no temporal changes in genetic diversity at any of the studied sites over the time scale of the study, despite strong changes in population sizes that were induced by restoration processes. Clonal richness tended to decrease over time, although not significantly. This study demonstrated that restored populations of clonal species maintained their genetic variability over time and that they might even display greater diversity than unrestored populations. This study also underscored the importance of monitoring the genetic diversity of species in restoration projects to maintain biodiversity

    Vegetation dynamics in a corridor between protected areas after slash-and-burn cultivation in south-eastern Madagascar

    No full text
    International audienceSlash-and-burn cultivation is a major cause of deforestation in Madagascar, and abandonment leads to the secondary vegetation dynamics, i.e. colonization by herbaceous vegetation, shrubs and trees. The study was conducted in south-eastern Madagascar in a steep transition zone along an altitudinal and a sharp precipitation gradient between a high altitude rainforest and a lowland dry tropical forest. The restoration of gaps created by abandoned fields in this narrow, winding corridor could be essential to maintain connectivity between two areas (areas 1 and 2) of Andohahela National Park. Prior to imple- menting restoration, baseline ecological information is needed on the reference ecosystem and vegetation resilience must be studied to identify restoration needs. This study aims to (1) assess whether cultiva- tion practices (irrigated rice vs. cassava, maize and sweet potato) influence vegetation dynamics after abandonment; (2) study vegetation dynamics and soils over time since abandonment, and (3) compare secondary forest vegetation and soils with those of mature forest patches. Surveys of vegetation and soil were conducted in 26 secondary forest patches abandoned from 3 to >25 years (synchronic approach) and in 19 adjacent mature forest patches (controls). No relationship between age of abandonment and vege- tation species richness, composition or structure was found, but clear differences were detected between secondary and mature forest patches. Secondary forests are not colonized by species from mature forests, but instead their vegetation dynamics appear to lead to the establishment of thorny thickets dominated by Mimosa delicatula, which is absent from the mature forest

    Vegetation dynamics in a corridor between protected areas after slash-and-burn cultivation in south-eastern Madagascar

    No full text
    a b s t r a c t Slash-and-burn cultivation is a major cause of deforestation in Madagascar, and abandonment leads to the secondary vegetation dynamics, i.e. colonization by herbaceous vegetation, shrubs and trees. The study was conducted in south-eastern Madagascar in a steep transition zone along an altitudinal and a sharp precipitation gradient between a high altitude rainforest and a lowland dry tropical forest. The restoration of gaps created by abandoned fields in this narrow, winding corridor could be essential to maintain connectivity between two areas (areas 1 and 2) of Andohahela National Park. Prior to implementing restoration, baseline ecological information is needed on the reference ecosystem and vegetation resilience must be studied to identify restoration needs. This study aims to (1) assess whether cultivation practices (irrigated rice vs. cassava, maize and sweet potato) influence vegetation dynamics after abandonment; (2) study vegetation dynamics and soils over time since abandonment, and (3) compare secondary forest vegetation and soils with those of mature forest patches. Surveys of vegetation and soil were conducted in 26 secondary forest patches abandoned from 3 to >25 years (synchronic approach) and in 19 adjacent mature forest patches (controls). No relationship between age of abandonment and vegetation species richness, composition or structure was found, but clear differences were detected between secondary and mature forest patches. Secondary forests are not colonized by species from mature forests, but instead their vegetation dynamics appear to lead to the establishment of thorny thickets dominated by Mimosa delicatula, which is absent from the mature forest
    corecore