18 research outputs found

    Long-term data with idebenone on respiratory function outcomes in patients with Duchenne muscular dystrophy.

    Get PDF
    peer reviewedDecline in respiratory function in patients with DMD starts during early teenage years and leads to early morbidity and mortality. Published evidence of efficacy for idebenone on respiratory function outcomes is currently limited to 12 months of follow-up time. Here we report data collected as retrospective cohort study (SYROS) from 18 DMD patients not using glucocorticoids who were treated with idebenone (900mg/day) under Expanded Access Programs (EAPs). The objective was to assess the long-term respiratory function evolution for periods On-Idebenone compared to periods Off-Idebenone in the same patients. The mean idebenone exposure in the EAPs was 4.2 (range 2.4-6.1) years. The primary endpoint was the annual change in forced vital capacity percent of predicted (FVC%p) compared between Off-Idebenone and On-Idebenone periods. The annual rate of decline in FVC%p was reduced by approximately 50% from -7.4% (95% CI: -9.1, -5.8) for the Off-Idebenone periods to -3.8% (95% CI: -4.8, -2.8) for the On-Idebenone periods (N=11). Similarly, annual change in peak expiratory flow percent of predicted (PEF%p) was -5.9% (95% CI: -8.0, -3.9) for the Off-Idebenone periods (N=9) and reduced to -1.9% (95% CI: -3.2, -0.7) for the On-Idebenone periods during the EAPs. The reduced rates of decline in FVC%p and PEF%p were maintained for several years with possible beneficial effects on the rate of bronchopulmonary adverse events, time to 10% decline in FVC%p and risk of hospitalization due to respiratory cause. These long-term data provide Class IV evidence to further support the disease modifying treatment effect of idebenone previously observed in randomized, controlled trials

    Long-term data with idebenone on respiratory function outcomes in patients with Duchenne muscular dystrophy

    No full text
    Decline in respiratory function in patients with DMD starts during early teenage years and leads to early morbidity and mortality. Published evidence of efficacy for idebenone on respiratory function outcomes is currently limited to 12 months of follow-up time. Here we report data collected as retrospective cohort study (SYROS) from 18 DMD patients not using glucocorticoids who were treated with idebenone (900 mg/day) under Expanded Access Programs (EAPs). The objective was to assess the long-term respiratory function evolution for periods On-Idebenone compared to periods Off-Idebenone in the same patients. The mean idebenone exposure in the EAPs was 4.2 (range 2.4-6.1) years. The primary endpoint was the annual change in forced vital capacity percent of predicted (FVC%p) compared between Off-Idebenone and On-Idebenone periods. The annual rate of decline in FVC%p was reduced by approximately 50% from -7.4% (95% CI: -9.1, -5.8) for the Off-Idebenone periods to -3.8% (95% CI: -4.8, -2.8) for the On-Idebenone periods (N = 11). Similarly, annual change in peak expiratory flow percent of predicted (PEF%p) was -5.9% (95% CI: -8.0, -3.9) for the Off-Idebenone periods (N = 9) and reduced to -1.9% (95% CI: -3.2, -0.7) for the On-Idebenone periods during the EAPs. The reduced rates of decline in FVC%p and PEF%p were maintained for several years with possible beneficial effects on the rate of bronchopulmonary adverse events, time to 10% decline in FVC%p and risk of hospitalization due to respiratory cause. These long-term data provide Class IV evidence to further support the disease modifying treatment effect of idebenone previously observed in randomized, controlled trials.status: publishe

    Leukoencephalopathy with calcifications and cysts:Genetic and phenotypic spectrum

    Get PDF
    Biallelic mutations in SNORD118, encoding the small nucleolar RNA U8, cause leukoencephalopathy with calcifications and cysts (LCC). Given the difficulty in interpreting the functional consequences of variants in nonprotein encoding genes, and the high allelic polymorphism across SNORD118 in controls, we set out to provide a description of the molecular pathology and clinical spectrum observed in a cohort of patients with LCC. We identified 64 affected individuals from 56 families. Age at presentation varied from 3 weeks to 67 years, with disease onset after age 40 years in eight patients. Ten patients had died. We recorded 44 distinct, likely pathogenic, variants in SNORD118. Fifty two of 56 probands were compound heterozygotes, with parental consanguinity reported in only three families. Forty nine of 56 probands were either heterozygous (46) or homozygous (three) for a mutation involving one of seven nucleotides that facilitate a novel intramolecular interaction between the 5′ end and 3′ extension of precursor-U8. There was no obvious genotype–phenotype correlation to explain the marked variability in age at onset. Complementing recently published functional analyses in a zebrafish model, these data suggest that LCC most often occurs due to combinatorial severe and milder mutations, with the latter mostly affecting 3′ end processing of precursor-U8

    cGAS-mediated induction of type I interferon due to inborn errors of histone pre-mRNA processing

    No full text
    International audienceInappropriate stimulation or defective negative regulation of the type I interferon response can lead to autoinflammation. In genetically uncharacterized cases of the type I interferonopathy Aicardi-Goutières syndrome, we identified biallelic mutations in LSM11 and RNU7-1, which encode components of the replication-dependent histone pre-mRNA-processing complex. Mutations were associated with the misprocessing of canonical histone transcripts and a disturbance of linker histone stoichiometry. Additionally, we observed an altered distribution of nuclear cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) and enhanced interferon signaling mediated by the cGAS-stimulator of interferon genes (STING) pathway in patient-derived fibroblasts. Finally, we established that chromatin without linker histone stimulates cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) production in vitro more efficiently. We conclude that nuclear histones, as key constituents of chromatin, are essential in suppressing the immunogenicity of self-DNA

    Analysis of gene expression data from Massive Parallel Sequencing identifies so far uncharacterised regulators for meiosis with one candidate being fundamental for prophase I in male and female meiosis

    Get PDF
    Meiosis is a specialized division of germ cells in sexually reproducing organisms, which is a fundamental process with key implications for evolution and biodiversity. In two consecutive rounds of cell division, meiosis I and meiosis II, a normal, diploid set of chromosome is halved. From diploid mother cells haploid gametes are generated to create genetic individual cells. This genetic uniqueness is obtained during prophase of meiosis I by essential meiotic processes in meiotic recombination, as double strand break (DSB) formation and repair, formation of crossovers (CO) and holiday junctions (HJs). Checkpoint mechanisms ensure a smooth progress of these events. Despite extensive research key mechanisms are still not understood. Based on an analysis of Massive Parallel Sequencing (MPS) data I could identify 2 genes, Mcmdc2 and Prr19, with high implication in meiotic recombination. In the absence of Mcmdc2 both sexes are infertile and meiocytes arrest at a stage equivalent to mid-­‐pachytene in wt. Investigations of the synaptonemal complex (SC) formation revealed severe defects suggesting a role for MCMDC2 in homology search. Moreover, MCMDC2 does not seem to be essential for DSB repair, as DSB markers of early and mid recombination nodules, like DMC1 and RPA, are decreased in oocytes. Nevertheless, late recombination nodules, which are positive for MutL homolog 1 (MLH1), do not form in both sexes. The absence of the asynapsis surveillance checkpoint mechanism in Hormad2 deficient ovaries with Mcmdc2 mutant background allowed survival of oocytes. This points into the direction that Mcmdc2 knock­out oocytes get eliminated after prophase I due to failed homologous synapsis. Interestingly, MCMDC2 contains a conserved helicase domain, like the MCM protein family members MCM8 and MCM9. I therefore hyphothesize that Mcmdc2 promotes homolgy search
    corecore