10,522 research outputs found

    Molecular Diagnostics in the Mycosphaerella Leaf Spot Disease Complex of Banana and for Radopholus similis

    Get PDF
    Mycosphaerella leaf spots and nematodes threaten banana cultivation worldwide. The Mycosphaerella disease complex involves three related ascomycetous fungi: Mycosphaerella fijiensis, M. musicola and M. eumusae. The exact distribution of these three species and their disease epidemiology remain unclear, since their symptoms and life cycles are rather similar. Diagnosing these diseases and the respective causal agents is based on the presence of host symptoms and fungal fruiting structures, but is time consuming and not conducive to preventive management. In the present study, we developed rapid and robust species-specific diagnostic tools to detect and quantify M. fijiensis, M. musicola and M. eumusae. Conventional species-specific PCR primers were developed based on the actin gene that detected as little as 100, 1 and 10 pg/µl DNA from, respectively, M. fijiensis, M. musicola and M. eumusae. Furthermore, TaqMan real-time quantitative PCR assays that were developed based on the ß-tubulin gene detected quantities as low as 1 pg/µl DNA of each species from pure cultures and 1.6 pg/µl DNA/mg of M. fijiensis from dry leaf tissue. The efficacy of the tests was validated using naturally infected banana leaves. Similar technology has been used to develop a quantitative PCR assay for the banana burrowing nematode, Radopholus similis, which is currently being validate

    Nuclear medium effects in ν(νˉ)\nu(\bar\nu)-nucleus deep inelastic scattering

    Full text link
    We study the nuclear medium effects in the weak structure functions F2(x,Q2)F_2(x,Q^2) and F3(x,Q2)F_3(x,Q^2) in the deep inelastic neutrino/antineutrino reactions in nuclei. We use a theoretical model for the nuclear spectral functions which incorporates the conventional nuclear effects, such as Fermi motion, binding and nucleon correlations. We also consider the pion and rho meson cloud contributions calculated from a microscopic model for meson-nucleus self-energies. The calculations have been performed using relativistic nuclear spectral functions which include nucleon correlations. Our results are compared with the experimental data of NuTeV and CDHSW.Comment: 24 pages, 14 figure

    Dosimetric benefits and preclinical performance of steerable needles in HDR prostate brachytherapy

    Get PDF
    Prostate cancer patients with an enlarged prostate and/or excessive pubic arch interference (PAI) are generally considered non-eligible for high-dose-rate (HDR) brachytherapy (BT). Steerable needles have been developed to make these patients eligible again. This study aims to validate the dosimetric impact and performance of steerable needles within the conventional clinical setting. HDR BT treatment plans were generated, needle implantations were performed in a prostate phantom, with prostate volume &gt; 55 cm3 and excessive PAI of 10 mm, and pre- and post-implant dosimetry were compared considering the dosimetric constraints: prostate V100 &gt; 95 % (13.50 Gy), urethra D0.1cm3 &lt; 115 % (15.53 Gy) and rectum D1cm3 &lt; 75 % (10.13 Gy). The inclusion of steerable needles resulted in a notable enhancement of the dose distribution and prostate V100 compared to treatment plans exclusively employing rigid needles to address PAI. Furthermore, the steerable needle plan demonstrated better agreement between pre- and post-implant dosimetry (prostate V100: 96.24 % vs. 93.74 %) compared to the rigid needle plans (79.13 % vs. 72.86 % and 87.70 % vs. 81.76 %), with no major changes in the clinical workflow and no changes in the clinical set-up. The steerable needle approach allows for more flexibility in needle positioning, ensuring a highly conformal dose distribution, and hence, HDR BT is a feasible treatment option again for prostate cancer patients with an enlarged prostate and/or excessive PAI.</p

    Dosimetric benefits and preclinical performance of steerable needles in HDR prostate brachytherapy

    Get PDF
    Prostate cancer patients with an enlarged prostate and/or excessive pubic arch interference (PAI) are generally considered non-eligible for high-dose-rate (HDR) brachytherapy (BT). Steerable needles have been developed to make these patients eligible again. This study aims to validate the dosimetric impact and performance of steerable needles within the conventional clinical setting. HDR BT treatment plans were generated, needle implantations were performed in a prostate phantom, with prostate volume &gt; 55 cm3 and excessive PAI of 10 mm, and pre- and post-implant dosimetry were compared considering the dosimetric constraints: prostate V100 &gt; 95 % (13.50 Gy), urethra D0.1cm3 &lt; 115 % (15.53 Gy) and rectum D1cm3 &lt; 75 % (10.13 Gy). The inclusion of steerable needles resulted in a notable enhancement of the dose distribution and prostate V100 compared to treatment plans exclusively employing rigid needles to address PAI. Furthermore, the steerable needle plan demonstrated better agreement between pre- and post-implant dosimetry (prostate V100: 96.24 % vs. 93.74 %) compared to the rigid needle plans (79.13 % vs. 72.86 % and 87.70 % vs. 81.76 %), with no major changes in the clinical workflow and no changes in the clinical set-up. The steerable needle approach allows for more flexibility in needle positioning, ensuring a highly conformal dose distribution, and hence, HDR BT is a feasible treatment option again for prostate cancer patients with an enlarged prostate and/or excessive PAI.</p

    Scaling of spontaneous rotation with temperature and plasma current in tokamaks

    Get PDF
    Using theoretical arguments, a simple scaling law for the size of the intrinsic rotation observed in tokamaks in the absence of momentum injection is found: the velocity generated in the core of a tokamak must be proportional to the ion temperature difference in the core divided by the plasma current, independent of the size of the device. The constant of proportionality is of the order of 10kms1MAkeV110\,\mathrm{km \cdot s^{-1} \cdot MA \cdot keV^{-1}}. When the intrinsic rotation profile is hollow, i.e. it is counter-current in the core of the tokamak and co-current in the edge, the scaling law presented in this Letter fits the data remarkably well for several tokamaks of vastly different size and heated by different mechanisms.Comment: 5 pages, 3 figure

    Long Term Variability of SDSS Quasars

    Full text link
    We use a sample of 3791 quasars from the Sloan Digital Sky Survey (SDSS) Early Data Release (EDR), and compare their photometry to historic plate material for the same set of quasars in order to study their variability properties. The time base-line we attain this way ranges from a few months to up to 50 years. In contrast to monitoring programs, where relatively few quasars are photometrically measured over shorter time periods, we utilize existing databases to extend this base-line as much as possible, at the cost of sampling per quasar. Our method, however, can easily be extended to much larger samples. We construct variability Structure Functions and compare these to the literature and model functions. From our modeling we conclude that 1) quasars are more variable toward shorter wavelengths, 2) their variability is consistent with an exponentially decaying light-curve with a typical time-scale of ~2 years, 3) these outbursts occur on typical time-scales of ~200 years. With the upcoming first data release of the SDSS, a much larger quasar sample can be used to put these conclusions on a more secure footing.Comment: 16 pages, accepted for publication in AJ, Sept issu

    Field-Dependent Tilt and Birefringence of Electroclinic Liquid Crystals: Theory and Experiment

    Get PDF
    An unresolved issue in the theory of liquid crystals is the molecular basis of the electroclinic effect in the smectic-A phase. Recent x-ray scattering experiments suggest that, in a class of siloxane-containing liquid crystals, an electric field changes a state of disordered molecular tilt in random directions into a state of ordered tilt in one direction. To investigate this issue, we measure the optical tilt and birefringence of these liquid crystals as functions of field and temperature, and we develop a theory for the distribution of molecular orientations under a field. Comparison of theory and experiment confirms that these materials have a disordered distribution of molecular tilt directions that is aligned by an electric field, giving a large electroclinic effect. It also shows that the net dipole moment of a correlated volume of molecules, a key parameter in the theory, scales as a power law near the smectic-A--smectic-C transition.Comment: 18 pages, including 9 postscript figures, uses REVTeX 3.0 and epsf.st
    corecore