655 research outputs found

    Identification of a low-risk subgroup of HER-2-positive breast cancer by the 70-gene prognosis signature

    Get PDF
    Backgroundoverexpression of HER-2 is observed in 15-25% of breast cancers, and is associated with increased risk of recurrence. Current guidelines recommend trastuzumab and chemotherapy for most HER-2-positive patients. However, the majority of patients does not recur and might thus be overtreated with adjuvant systemic therapy. We investigated whether the 70-gene MammaPrint signature identifies HER-2-positive patients with favourable outcome.Methodsin all, 168 T1-3, N0-1, HER-2-positive patients were identified from a pooled database, classified by the 70-gene signature as good or poor prognosis, and correlated with long-term outcome. A total of 89 of these patients did not receive adjuvant chemotherapy.Resultsin the group of 89 chemotherapy-naive patients, after a median follow-up of 7.4 years, 35 (39%) distant recurrences and 29 (33%) breast cancer-specific deaths occurred. The 70-gene signature classified 20 (22%) patients as good prognosis, with 10-year distant disease-free survival (DDFS) of 84%, compared with 69 (78%) poor prognosis patients with 10-year DDFS of 55%. The estimated hazard ratios (HRs) were 4.5 (95% confidence interval (CI) 1.1-18.7, P=0.04) and 3.8 (95% CI 0.9-15.8, P=0.07) for DDFS and breast cancer-specific survival (BCSS), respectively. In multivariate analysis adjusted for known prognostic factors and hormonal therapy, HRs were 5.8 (95% CI 1.3-26.7, P=0.03) and 4.7 (95% CI 1.0-21.7, P=0.05) for DDFS and BCSS, respectively.Interpretationthe 70-gene prognosis signature is an independent prognostic indicator that identifies a subgroup of HER-2-positive early breast cancer with a favourable long-term outcome

    A simple method for assigning genomic grade to individual breast tumours

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prognostic value of grading in breast cancer can be increased with microarray technology, but proposed strategies are disadvantaged by the use of specific training data or parallel microscopic grading. Here, we investigate the performance of a method that uses no information outside the breast profile of interest.</p> <p>Results</p> <p>In 251 profiled tumours we optimised a method that achieves grading by comparing rank means for genes predictive of high and low grade biology; a simpler method that allows for truly independent estimation of accuracy. Validation was carried out in 594 patients derived from several independent data sets. We found that accuracy was good: for low grade (G1) tumors 83- 94%, for high grade (G3) tumors 74- 100%. In keeping with aim of improved grading, two groups of intermediate grade (G2) cancers with significantly different outcome could be discriminated.</p> <p>Conclusion</p> <p>This validates the concept of microarray-based grading in breast cancer, and provides a more practical method to achieve it. A simple R script for grading is available in an additional file. Clinical implementation could achieve better estimation of recurrence risk for 40 to 50% of breast cancer patients.</p

    Predicting glioblastoma prognosis networks using weighted gene co-expression network analysis on TCGA data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Using gene co-expression analysis, researchers were able to predict clusters of genes with consistent functions that are relevant to cancer development and prognosis. We applied a weighted gene co-expression network (WGCN) analysis algorithm on glioblastoma multiforme (GBM) data obtained from the TCGA project and predicted a set of gene co-expression networks which are related to GBM prognosis.</p> <p>Methods</p> <p>We modified the Quasi-Clique Merger algorithm (QCM algorithm) into edge-covering Quasi-Clique Merger algorithm (eQCM) for mining weighted sub-network in WGCN. Each sub-network is considered a set of features to separate patients into two groups using K-means algorithm. Survival times of the two groups are compared using log-rank test and Kaplan-Meier curves. Simulations using random sets of genes are carried out to determine the thresholds for log-rank test p-values for network selection. Sub-networks with p-values less than their corresponding thresholds were further merged into clusters based on overlap ratios (>50%). The functions for each cluster are analyzed using gene ontology enrichment analysis.</p> <p>Results</p> <p>Using the eQCM algorithm, we identified 8,124 sub-networks in the WGCN, out of which 170 sub-networks show p-values less than their corresponding thresholds. They were then merged into 16 clusters.</p> <p>Conclusions</p> <p>We identified 16 gene clusters associated with GBM prognosis using the eQCM algorithm. Our results not only confirmed previous findings including the importance of cell cycle and immune response in GBM, but also suggested important epigenetic events in GBM development and prognosis.</p

    A critical evaluation of network and pathway based classifiers for outcome prediction in breast cancer

    Get PDF
    Recently, several classifiers that combine primary tumor data, like gene expression data, and secondary data sources, such as protein-protein interaction networks, have been proposed for predicting outcome in breast cancer. In these approaches, new composite features are typically constructed by aggregating the expression levels of several genes. The secondary data sources are employed to guide this aggregation. Although many studies claim that these approaches improve classification performance over single gene classifiers, the gain in performance is difficult to assess. This stems mainly from the fact that different breast cancer data sets and validation procedures are employed to assess the performance. Here we address these issues by employing a large cohort of six breast cancer data sets as benchmark set and by performing an unbiased evaluation of the classification accuracies of the different approaches. Contrary to previous claims, we find that composite feature classifiers do not outperform simple single gene classifiers. We investigate the effect of (1) the number of selected features; (2) the specific gene set from which features are selected; (3) the size of the training set and (4) the heterogeneity of the data set on the performance of composite feature and single gene classifiers. Strikingly, we find that randomization of secondary data sources, which destroys all biological information in these sources, does not result in a deterioration in performance of composite feature classifiers. Finally, we show that when a proper correction for gene set size is performed, the stability of single gene sets is similar to the stability of composite feature sets. Based on these results there is currently no reason to prefer prognostic classifiers based on composite features over single gene classifiers for predicting outcome in breast cancer

    Prognostic gene network modules in breast cancer hold promise

    Get PDF
    A substantial proportion of lymph node-negative patients who receive adjuvant chemotherapy do not derive any benefit from this aggressive and potentially toxic treatment. However, standard histopathological indices cannot reliably detect patients at low risk of relapse or distant metastasis. In the past few years several prognostic gene expression signatures have been developed and shown to potentially outperform histopathological factors in identifying low-risk patients in specific breast cancer subgroups with predictive values of around 90%, and therefore hold promise for clinical application. We envisage that further improvements and insights may come from integrative expression pathway analyses that dissect prognostic signatures into modules related to cancer hallmarks

    The promise of microarrays in the management and treatment of breast cancer

    Get PDF
    Breast cancer is the most common malignancy afflicting women from Western cultures. Developments in breast cancer molecular and cellular biology research have brought us closer to understanding the genetic basis of this disease. Recent advances in microarray technology hold the promise of further increasing our understanding of the complexity and heterogeneity of this disease, and providing new avenues for the prognostication and prediction of breast cancer outcomes. These new technologies have some limitations and have yet to be incorporated into clinical use, for both the diagnosis and treatment of women with breast cancer. The most recent application of microarray genomic technologies to studying breast cancer is the focus of this review

    A Novel Unsupervised Method to Identify Genes Important in the Anti-viral Response: Application to Interferon/Ribavirin in Hepatitis C Patients

    Get PDF
    Background: Treating hepatitis C with interferon/ribavirin results in a varied response in terms of decrease in viral titer and ultimate outcome. Marked responders have a sharp decline in viral titer within a few days of treatment initiation, whereas in other patients there is no effect on the virus (poor responders). Previous studies have shown that combination therapy modifies expression of hundreds of genes in vitro and in vivo. However, identifying which, if any, of these genes have a role in viral clearance remains challenging. Aims: The goal of this paper is to link viral levels with gene expression and thereby identify genes that may be responsible for early decrease in viral titer. Methods: Microarrays were performed on RNA isolated from PBMC of patients undergoing interferon/ribavirin therapy. Samples were collected at pre-treatment (day 0), and 1, 2, 7, 14 and 28 days after initiating treatment. A novel method was applied to identify genes that are linked to a decrease in viral titer during interferon/ribavirin treatment. The method uses the relationship between inter-patient gene expression based proximities and inter-patient viral titer based proximities to define the association between microarray gene expression measurements of each gene and viral-titer measurements. Results: We detected 36 unique genes whose expressions provide a clustering of patients that resembles viral titer based clustering of patients. These genes include IRF7, MX1, OASL and OAS2, viperin and many ISG's of unknown function. Conclusion: The genes identified by this method appear to play a major role in the reduction of hepatitis C virus during the early phase of treatment. The method has broad utility and can be used to analyze response to any group of factors influencing biological outcome such as antiviral drugs or anti-cancer agents where microarray data are available. © 2007 Brodsky et al

    Predictive gene lists for breast cancer prognosis: A topographic visualisation study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The controversy surrounding the non-uniqueness of predictive gene lists (PGL) of small selected subsets of genes from very large potential candidates as available in DNA microarray experiments is now widely acknowledged <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>. Many of these studies have focused on constructing discriminative semi-parametric models and as such are also subject to the issue of random correlations of sparse model selection in high dimensional spaces. In this work we outline a different approach based around an unsupervised patient-specific nonlinear topographic projection in predictive gene lists.</p> <p>Methods</p> <p>We construct nonlinear topographic projection maps based on inter-patient gene-list relative dissimilarities. The Neuroscale, the Stochastic Neighbor Embedding(SNE) and the Locally Linear Embedding(LLE) techniques have been used to construct two-dimensional projective visualisation plots of 70 dimensional PGLs per patient, classifiers are also constructed to identify the prognosis indicator of each patient using the resulting projections from those visualisation techniques and investigate whether <it>a-posteriori </it>two prognosis groups are separable on the evidence of the gene lists.</p> <p>A literature-proposed predictive gene list for breast cancer is benchmarked against a separate gene list using the above methods. Generalisation ability is investigated by using the mapping capability of Neuroscale to visualise the follow-up study, but based on the projections derived from the original dataset.</p> <p>Results</p> <p>The results indicate that small subsets of patient-specific PGLs have insufficient prognostic dissimilarity to permit a distinction between two prognosis patients. Uncertainty and diversity across multiple gene expressions prevents unambiguous or even confident patient grouping. Comparative projections across different PGLs provide similar results.</p> <p>Conclusion</p> <p>The random correlation effect to an arbitrary outcome induced by small subset selection from very high dimensional interrelated gene expression profiles leads to an outcome with associated uncertainty. This continuum and uncertainty precludes any attempts at constructing discriminative classifiers.</p> <p>However a patient's gene expression profile could possibly be used in treatment planning, based on knowledge of other patients' responses.</p> <p>We conclude that many of the patients involved in such medical studies are <it>intrinsically unclassifiable </it>on the basis of provided PGL evidence. This additional category of 'unclassifiable' should be accommodated within medical decision support systems if serious errors and unnecessary adjuvant therapy are to be avoided.</p
    corecore