115 research outputs found

    Dengue Virus 3 Genotype I in Aedes aegypti Mosquitoes and Eggs, Brazil, 2005–2006

    Get PDF
    Dengue virus type 3 genotype I was detected in Brazil during epidemics in 2002–2004. To confirm this finding, we identified this virus genotype in naturally infected field-caught Aedes aegypti mosquitoes and eggs. Results showed usefulness of virus investigations in vectors as a component of active epidemiologic surveillance

    Mosquitoes infected with dengue viruses in Brazil

    Get PDF
    Dengue epidemics have been reported in Brazil since 1985. The scenery has worsened in the last decade because several serotypes are circulating and producing a hyper-endemic situation, with an increase of DHF/DSS cases as well as the number of fatalities. Herein, we report dengue virus surveillance in mosquitoes using a Flavivirus genus-specific RT-Hemi-Nested-PCR assay. The mosquitoes (Culicidae, n = 1700) collected in the Northeast, Southeast and South of Brazil, between 1999 and 2005, were grouped into 154 pools. Putative genomes of DENV-1, -2 and -3 were detected in 6 mosquito pools (3.8%). One amplicon of putative DENV-1 was detected in a pool of Haemagogus leucocelaenus suggesting that this virus could be involved in a sylvatic cycle. DENV-3 was found infecting 3 pools of larvae of Aedes albopictus and the nucleotide sequence of one of these viruses was identified as DENV-3 of genotype III, phylogenetically related to other DENV-3 isolated in Brazil. This is the first report of a nucleotide sequence of DENV-3 from larvae of Aedes albopictus

    Detection of the mosquito-borne flaviviruses, West Nile, Dengue, Saint Louis Encephalitis, Ilheus, Bussuquara, and Yellow Fever in free-ranging black howlers (Alouatta caraya) of Northeastern Argentina

    Get PDF
    Several medically important mosquito-borne flaviviruses have been detected in Argentina in recent years: Dengue (DENV), St. Louis encephalitis (SLEV), West Nile (WNV) and Yellow Fever (YFV) viruses. Evidence of Bussuquara virus (BSQV) and Ilheus virus (ILHV) activity were found, but they have not been associated with human disease. Non-human primates can act as important hosts in the natural cycle of flaviviruses and serological studies can lead to improved understanding of virus circulation dynamics and host susceptibility. From July–August 2010, we conducted serological and molecular surveys in free–ranging black howlers (Alouatta caraya) captured in northeastern Argentina. We used 90% plaque-reduction neutralization tests (PRNT90) to analyze 108 serum samples for antibodies to WNV, SLEV, YFV, DENV (serotypes 1and 3), ILHV, and BSQV. Virus genome detection was performed using generic reverse transcription (RT)-nested PCR to identify flaviviruses in 51 antibody-negative animals. Seventy animals had antibodies for one or more flaviviruses for a total antibody prevalence of 64.8% (70/108). Monotypic (13/70, 19%) and heterotypic (27/70, 39%) patterns were differentiated. Specific neutralizing antibodies against WNV, SLEV, DENV-1, DENV-3, ILHV, and BSQV were found. Unexpectedly, the highest flavivirus antibody prevalence detected was to WNV with 9 (8.33%) monotypic responses. All samples tested by (RT)-nested PCR were negative for viral genome. This is the first detection of WNV-specific antibodies in black howlers from Argentina and the first report in free-ranging non-human primates from Latin-American countries. Given that no animals had specific neutralizing antibodies to YFV, our results suggest that the study population remains susceptible to YFV. Monitoring of these agents should be strengthened to detect the establishment of sylvatic cycles of flaviviruses in America and evaluate risks to wildlife and human health.Fil: Morales, Maria Alejandra. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbran". Instituto Nacional de Enfermedades Virales Humanas; ArgentinaFil: Fabbri, Cintia M.. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbran". Instituto Nacional de Enfermedades Virales Humanas; ArgentinaFil: Zunino, Gabriel Eduardo. Universidad Nacional de General Sarmiento. Instituto del Conurbano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kowalewski, Miguel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia". Estación Biológica de Usos Múltiples (Sede Corrientes); ArgentinaFil: Luppo, Victoria C.. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbran". Instituto Nacional de Enfermedades Virales Humanas; ArgentinaFil: Enría, Delia A.. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbran". Instituto Nacional de Enfermedades Virales Humanas; ArgentinaFil: Levis, Silvana C.. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbran". Instituto Nacional de Enfermedades Virales Humanas; ArgentinaFil: Calderón, Gladys Ethel. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbran". Instituto Nacional de Enfermedades Virales Humanas; Argentin

    Large-scale population disappearances and cycling in the white-lipped peccary, a tropical forest mammal.

    Get PDF
    Many vertebrate species undergo population fluctuations that may be random or regularly cyclic in nature. Vertebrate population cycles in northern latitudes are driven by both endogenous and exogenous factors. Suggested causes of mysterious disappearances documented for populations of the Neotropical, herd-forming, white-lipped peccary (Tayassu pecari, henceforth "WLP") include large-scale movements, overhunting, extreme floods, or disease outbreaks. By analyzing 43 disappearance events across the Neotropics and 88 years of commercial and subsistence harvest data for the Amazon, we show that WLP disappearances are widespread and occur regularly and at large spatiotemporal scales throughout the species' range. We present evidence that the disappearances represent 7-12-year troughs in 20-30-year WLP population cycles occurring synchronously at regional and perhaps continent-wide spatial scales as large as 10,000-5 million km2. This may represent the first documented case of natural population cyclicity in a Neotropical mammal. Because WLP populations often increase dramatically prior to a disappearance, we posit that their population cycles result from over-compensatory, density-dependent mortality. Our data also suggest that the increase phase of a WLP cycle is partly dependent on recolonization from proximal, unfragmented and undisturbed forests. This highlights the importance of very large, continuous natural areas that enable source-sink population dynamics and ensure re-colonization and local population persistence in time and space

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    Get PDF
    Xenarthrans – anteaters, sloths, and armadillos – have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with 24 domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, ten anteaters, and six sloths. Our dataset includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data-paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the south of the USA, Mexico, and Caribbean countries at the northern portion of the Neotropics, to its austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n=5,941), and Cyclopes sp. has the fewest (n=240). The armadillo species with the most data is Dasypus novemcinctus (n=11,588), and the least recorded for Calyptophractus retusus (n=33). With regards to sloth species, Bradypus variegatus has the most records (n=962), and Bradypus pygmaeus has the fewest (n=12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other datasets of Neotropical Series which will become available very soon (i.e. Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans dataset
    corecore