876 research outputs found
The Puzzle and the Nuclear Force
The nucleon-deuteron analyzing power in elastic nucleon-deuteron
scattering poses a longstanding puzzle. At energies below
approximately 30 MeV cannot be described by any realistic NN force. The
inclusion of existing three-nucleon forces does not improve the situation.
Because of recent questions about the NN phases, we examine whether
reasonable changes in the NN force can resolve the puzzle. In order to do this
we investigate the effect on the waves produced by changes in different
parts of the potential (viz., the central force, tensor force, etc.), as well
as on the 2-body observables and on . We find that it is not possible with
reasonable changes in the NN potential to increase the 3-body and at the
same time to keep the 2-body observables unchanged. We therefore conclude that
the puzzle is likely to be solved by new three-nucleon forces, such as
those of spin-orbit type, which have not yet been taken into account.Comment: 35 pages in REVTeX, 1 figure in postscript and 3 figures in PiCTe
Parton Distributions for the Octet and Decuplet Baryons
We calculate the parton distributions for both polarized and unpolarized
octet and decuplet baryons, using the MIT bag, dressed by mesons. We show that
the hyperfine interaction responsible for the and splittings leads to large deviations from SU(3) and SU(6) predictions.
For the we find significant polarized, non-strange parton
distributions which lead to a sizable polarization in polarized,
semi-inclusive scattering. We also discuss the flavour symmetry violation
arising from the meson-cloud associated with the chiral structure of baryons.Comment: 29 pages, 15 figure
Therapeutic and educational objectives in robot assisted play for children with autism
“This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.” DOI: 10.1109/ROMAN.2009.5326251This article is a methodological paper that describes the therapeutic and educational objectives that were identified during the design process of a robot aimed at robot assisted play. The work described in this paper is part of the IROMEC project (Interactive Robotic Social Mediators as Companions) that recognizes the important role of play in child development and targets children who are prevented from or inhibited in playing. The project investigates the role of an interactive, autonomous robotic toy in therapy and education for children with special needs. This paper specifically addresses the therapeutic and educational objectives related to children with autism. In recent years, robots have already been used to teach basic social interaction skills to children with autism. The added value of the IROMEC robot is that play scenarios have been developed taking children's specific strengths and needs into consideration and covering a wide range of objectives in children's development areas (sensory, communicational and interaction, motor, cognitive and social and emotional). The paper describes children's developmental areas and illustrates how different experiences and interactions with the IROMEC robot are designed to target objectives in these areas.Final Published versio
Charge symmetry violation in the parton distributions of the nucleon
We point out that charge symmetry violation in both the valence and sea quark
distributions of the nucleon has a non-perturbative source. We calculate this
non-perturbative charge symmetry violation using the meson cloud model, which
has earlier been successfully applied to both the study of SU(2) flavour
asymmetry in the nucleon sea and quark-antiquark asymmetry in the nucleon. We
find that the charge symmetry violation in the valence quark distribution is
well below 1%, which is consistent with most low energy tests but significantly
smaller than the quark model prediction about 5%-10%. Our prediction for the
charge symmetry violation in the sea quark distribution is also much smaller
than the quark model calculation.Comment: RevTex, 26 pages, 6 PostScript figure
Soft-core hyperon-nucleon potentials
A new Nijmegen soft-core OBE potential model is presented for the low-energy
YN interactions. Besides the results for the fit to the scattering data, which
largely defines the model, we also present some applications to hypernuclear
systems using the G-matrix method. An important innovation with respect to the
original soft-core potential is the assignment of the cut-off masses for the
baryon-baryon-meson (BBM) vertices in accordance with broken SU(3), which
serves to connect the NN and the YN channels. As a novel feature, we allow for
medium strong breaking of the coupling constants, using the model with
a Gell-Mann--Okubo hypercharge breaking for the BBM coupling. We present six
hyperon-nucleon potentials which describe the available YN cross section data
equally well, but which exhibit some differences on a more detailed level. The
differences are constructed such that the models encompass a range of
scattering lengths in the and channels. For the
scalar-meson mixing angle we obtained values to 40 degrees, which
points to almost ideal mixing angles for the scalar states. The
G-matrix results indicate that the remarkably different spin-spin terms of the
six potentials appear specifically in the energy spectra of
hypernuclei.Comment: 37 pages, 4 figure
An isotopic effect in phi photoproduction at a few GeV
A distinct isotopic effect in phi photoproduction at 2-5 GeV region is
identified by examining the production amplitudes due to Pomeron-exchange and
meson-exchange mechanisms. This effect is mainly caused by the pi-eta
interference constrained by SU(3) symmetry and the isotopic structure of the
gamma NN coupling in the direct phi-radiation amplitude. It can be tested
experimentally by measuring differences in the polarization observables between
the gamma-p and gamma-n reactions.Comment: 11 pages, 6 figure
Nuclear Sizes and the Isotope Shift
Darwin-Foldy nuclear-size corrections in electronic atoms and nuclear radii
are discussed from the nuclear-physics perspective. Interpretation of precise
isotope-shift measurements is formalism dependent, and care must be exercised
in interpreting these results and those obtained from relativistic electron
scattering from nuclei. We strongly advocate that the entire nuclear-charge
operator be used in calculating nuclear-size corrections in atoms, rather than
relegating portions of it to the non-radiative recoil corrections. A
preliminary examination of the intrinsic deuteron radius obtained from
isotope-shift measurements suggests the presence of small meson-exchange
currents (exotic binding contributions of relativistic order) in the nuclear
charge operator, which contribute approximately 1/2%.Comment: 17 pages, latex, 1 figure -- Submitted to Phys. Rev. A -- epsfig.sty
require
Direct response of twin-slot antenna-coupled hot-electron bolometer mixers designed for 2.5 THz radiation detection
We measure the direct response of a Nb diffusion-cooled hot-electron bolometer mixer in a frequency range between 0.5 and 3.5 THz. The mixer consists essentially of a twin-slot antenna, a co-planar waveguide transmission line and a Nb superconducting bridge. It is designed for use in receivers with astronomical and atmospherical applications around 2.5 THz. We calculate the impedance of the antenna, the transmission line, and the bridge separately using models which are developed for frequencies below 1 THz and predict the direct response of the mixer. We demonstrate that these models can be applied to much higher frequencies. However, the measured central frequency is 10%-15% lower than predicted. (C) 2000 American Institute of Physics. [S0003-6951(00)02022-2]
- …