25,220 research outputs found

    de Broglie-Proca and Bopp-Podolsky massive photon gases in cosmology

    Full text link
    We investigate the influence of massive photons on the evolution of the expanding universe. Two particular models for generalized electrodynamics are considered, namely de Broglie-Proca and Bopp-Podolsky electrodynamics. We obtain the equation of state (EOS) P=P(ε)P=P(\varepsilon) for each case using dispersion relations derived from both theories. The EOS are inputted into the Friedmann equations of a homogeneous and isotropic space-time to determine the cosmic scale factor a(t)a(t). It is shown that the photon non-null mass does not significantly alter the result at1/2a\propto t^{1/2} valid for a massless photon gas; this is true either in de Broglie-Proca's case (where the photon mass mm is extremely small) or in Bopp-Podolsky theory (for which mm is extremely large).Comment: 8 pages, 2 figures; v2 matches the published versio

    The silicon stable isotope distribution along the GEOVIDE section (GEOTRACES GA-01) of the North Atlantic Ocean

    Get PDF
    The stable isotope composition of dissolved silicon in seawater (δ30SiDSi) was examined at 10 stations along the GEOVIDE section (GEOTRACES GA-01), spanning the North Atlantic Ocean (40–60∘ N) and Labrador Sea. Variations in δ30SiDSi below 500 m were closely tied to the distribution of water masses. Higher δ30SiDSi values are associated with intermediate and deep water masses of northern Atlantic or Arctic Ocean origin, whilst lower δ30SiDSi values are associated with DSi-rich waters sourced ultimately from the Southern Ocean. Correspondingly, the lowest δ30SiDSi values were observed in the deep and abyssal eastern North Atlantic, where dense southern-sourced waters dominate. The extent to which the spreading of water masses influences the δ30SiDSi distribution is marked clearly by Labrador Sea Water (LSW), whose high δ30SiDSi signature is visible not only within its region of formation within the Labrador and Irminger seas, but also throughout the mid-depth western and eastern North Atlantic Ocean. Both δ30SiDSi and hydrographic parameters document the circulation of LSW into the eastern North Atlantic, where it overlies southern-sourced Lower Deep Water. The GEOVIDE δ30SiDSi distribution thus provides a clear view of the direct interaction between subpolar/polar water masses of northern and southern origin, and allow examination of the extent to which these far-field signals influence the local δ30SiDSi distribution

    Accuracy of a teleported trapped field state inside a single bimodal cavity

    Full text link
    We propose a simplified scheme to teleport a superposition of coherent states from one mode to another of the same bimodal lossy cavity. Based on current experimental capabilities, we present a calculation of the fidelity that can be achieved, demonstrating accurate teleportation if the mean photon number of each mode is at most 1.5. Our scheme applies as well for teleportation of coherent states from one mode of a cavity to another mode of a second cavity, both cavities embedded in a common reservoir.Comment: 4 pages, 2 figures, in appreciation for publication in Physical Review

    Sensory evaluation and cooking properties of macaroni at basis of brazil nut (Bertholetia excelsa) and peach palm fruit (Bactris gasipaes, Kunt) flours.

    Get PDF
    The Brazil nut tree, Bertholletia excelsa HBK, is explored throughout the Amazon region and its main characteristic is high content of lipids and proteins, they consist of sulfur amino acids of high biological value. The peach palm, Bactris gasipases, Kunth, is a native palm to the same region, that is grown for heart-of-palm extraction. Their fruits are mostly protein, vitamin A and fiber. The way of adding commercial value from co-products to Brazil nut processing is flour productian. That way the Brazil nut flour, for its high nutritional value and pleasant taste was used in macaroni production, along with peach palm fruit flour to improve the nutritianal properties of final product

    Experimental investigation of linear-optics-based quantum target detection

    Full text link
    The development of new techniques to improve measurements is crucial for all sciences. By employing quantum systems as sensors to probe some physical property of interest allows the application of quantum resources, such as coherent superpositions and quantum correlations, to increase measurement precision. Here we experimentally investigate a scheme for quantum target detection based on linear optical measurment devices, when the object is immersed in unpolarized background light. By comparing the quantum (polarization-entangled photon pairs) and the classical (separable polarization states), we found that the quantum strategy provides us an improvement over the classical one in our experiment when the signal to noise ratio is greater than 1/40, or about 16dB of noise. This is in constrast to quantum target detection considering non-linear optical detection schemes, which have shown resilience to extreme amounts of noise. A theoretical model is developed which shows that, in this linear-optics context, the quantum strategy suffers from the contribution of multiple background photons. This effect does not appear in our classical scheme. By improving the two-photon detection electronics, it should be possible to achieve a polarization-based quantum advantage for a signal to noise ratio that is close to 1/400 for current technology.Comment: comments are welcome, submitted to PR

    Noether symmetry for non-minimally coupled fermion fields

    Full text link
    A cosmological model where a fermion field is non-minimally coupled with the gravitational field is studied. By applying Noether symmetry the possible functions for the potential density of the fermion field and for the coupling are determined. Cosmological solutions are found showing that the non-minimally coupled fermion field behaves as an inflaton describing an accelerated inflationary scenario, whereas the minimally coupled fermion field describes a decelerated period being identified as dark matter.Comment: Revised version accepted for publication in Classical and Quantum Gravit
    corecore