31,717 research outputs found

    Coupled scalar fields Oscillons and Breathers in some Lorentz Violating Scenarios

    Get PDF
    In this work we discuss the impact of the breaking of the Lorentz symmetry on the usual oscillons, the so-called flat-top oscillons, and the breathers. Our analysis is performed by using a Lorentz violation scenario rigorously derived in the literature. We show that the Lorentz violation is responsible for the origin of a kind of deformation of the configuration, where the field configuration becomes oscillatory in a localized region near its maximum value. Furthermore, we show that the Lorentz breaking symmetry produces a displacement of the oscillon along the spatial direction, the same feature is present in the case of breathers. We also show that the effect of a Lorentz violation in the flat-top oscillon solution is responsible by the shrinking of the flat-top. Furthermore, we find analytically the outgoing radiation, this result indicates that the amplitude of the outgoing radiation is controlled by the Lorentz breaking parameter, in such away that this oscillon becomes more unstable than its symmetric counterpart, however, it still has a long living nature

    On the study of oscillons in scalar field theories: A new approach

    Get PDF
    In this work we study configurations in one-dimensional scalar field theory, which are time-dependent, localized in space and extremely long-lived called oscillons. It is investigated how the action of changing the minimum value of the field configuration representing the oscillon affects its behavior. We find that one of the consequences of this procedure, is the appearance of a pair of oscillon-like structures presenting different amplitudes and frequencies of oscillation. We also compare our analytical results to numerical ones, showing excellent agreement

    Analytical Multi-kinks in smooth potentials

    Full text link
    In this work we present an approach which can be systematically used to construct nonlinear systems possessing analytical multi-kink profile configurations. In contrast with previous approaches to the problem, we are able to do it by using field potentials which are considerably smoother than the ones of Doubly Quadratic family of potentials. This is done without losing the capacity of writing exact analytical solutions. The resulting field configurations can be applied to the study of problems from condensed matter to brane world scenarios

    Information-Entropic Measure of Energy-Degenerate Kinks in Two-Field Models

    Get PDF
    We investigate the existence and properties of kink-like solitons in a class of models with two interacting scalar fields. In particular, we focus on models that display both double and single-kink solutions, treatable analytically using the Bogomol'nyi--Prasad--Sommerfield bound (BPS). Such models are of interest in applications that include Skyrmions and various superstring-motivated theories. Exploring a region of parameter space where the energy for very different spatially-bound configurations is degenerate, we show that a newly-proposed momentum-space entropic measure called Configurational Entropy (CE) can distinguish between such energy-degenerate spatial profiles. This information-theoretic measure of spatial complexity provides a complementary perspective to situations where strictly energy-based arguments are inconclusive

    Structural and magnetic transition in CeFeAsO: separated or connected?

    Get PDF
    Using an adapted Sn-flux growth technique we obtained comparatively large CeFeAsO single crystals of better quality than previously reported polycrystals or single crystals, as evidenced by much sharper anomalies at the structural and magnetic phase transitions as well as a much higher residual resistivity ratio of 12. In the magnetically ordered phase we observe a very pronounced metallic behavior of the in-plane resistivity, which excludes a Mott insulator regime at low temperature. The separation Delta_T = T_0 - T_N between structural and magnetic ordering temperatures decreases with increasing sample quality, from 18 K in the initial reports to 6 K in the present single crystals, demonstrating that this separation is not an intrinsic property of the RFeAsO systems. Our results indicate that the coupling between magnetic ordering and structural distortion is very similar in AFe2As2 and RFeAsO type of compounds, much more similar than previously thought. The implications of our experimental results give arguments both in favor and against the nematic phase model.Comment: published in PRB with the title 'Coupling between the structural and magnetic transition in CeFeAsO

    Information-Entropic for Travelling Solitons in Lorentz and CPT Breaking Systems

    Full text link
    In this work we group three research topics apparently disconnected, namely solitons, Lorentz symmetry breaking and entropy. Following a recent work [Phys. Lett. B 713 (2012) 304], we show that it is possible to construct in the context of travelling wave solutions a configurational entropy measure in functional space, from the field configurations. Thus, we investigate the existence and properties of travelling solitons in Lorentz and CPT breaking scenarios for a class of models with two interacting scalar fields. Here, we obtain a complete set of exact solutions for the model studied which display both double and single-kink configurations. In fact, such models are very important in applications that include Bloch branes, Skyrmions, Yang-Mills, Q-balls, oscillons and various superstring-motivated theories. We find that the so-called Configurational Entropy (CE) for travelling solitons, which we name as travelling Configurational Entropy (TCE), shows that the best value of parameter responsible to break the Lorentz symmetry is one where the energy density is distributed equally around the origin. In this way, the information-theoretical measure of travelling solitons in Lorentz symmetry violation scenarios opens a new window to probe situations where the parameters responsible for breaking the symmetries are random. In this case, the TCE selects the best value
    • …
    corecore