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We discuss the impact of the breaking of the Lorentz symmetry on the usual oscillons, the so-called flat-top oscillons, and the
breathers. Our analysis is performed by using a Lorentz violation scenario rigorously derived in the literature. We show that the
Lorentz violation is responsible for the origin of a kind of deformation of the configuration, where the field configuration becomes
oscillatory in a localized region near its maximum value. Furthermore, we show that the Lorentz breaking symmetry produces a
displacement of the oscillon along the spatial direction; the same feature is present in the case of breathers. We also show that the
effect of a Lorentz violation in the flat-top oscillon solution is responsible by the shrinking of the flat-top. Furthermore, we find
analytically the outgoing radiation; this result indicates that the amplitude of the outgoing radiation is controlled by the Lorentz
breaking parameter, in such a way that this oscillon becomes more unstable than its symmetric counterpart; however, it still has a
long living nature.

1. Introduction

The study of nonlinear systems is becoming an area of
increasing interest along the last few decades [1, 2]. In fact,
such nonlinear behavior of physical systems is found in
a broad part of physical systems nowadays. This includes
condensed matter systems, field theoretical models, modern
cosmology, and a large number of other domains of the
physical science [3–28]. One of the reasons of this increasing
interest is the fact thatmany of those systems present a count-
able number of distinct degenerate minimal energy config-
urations. In many cases that degenerate structure can be
studied through simple models of scalar fields possessing a
potential with two or more degenerate minima. For instance,
in two or more spatial dimensions, one can describe the
so-called domain walls [4] connecting different portions of
the space where the field is at different values of the degen-
erate minima of the field potential. In other words, the field
configuration interpolates between two of those potential
minima. At this point, it is important to remark that a
powerful insight to solve nonlinear problems analytically

was introduced by Bolgomol’nyi, Prasad, and Sommerfield
[5, 6]. In this case, the method shown by Bolgomol’nyi,
Prasad, and Sommerfield is now called BPS approach, and it
is based on obtaining a first-order differential equation from
the energy functional. By using this method, it is possible to
find solutions that minimize the energy of the configuration
and that ensure their stability.

In the context of the field theory it is quite common
the appearance of solitons [7], which are field configurations
presenting a localized and shape-invariant aspect, having a
finite energy density as well as being capable of keeping their
shape unaltered after a collision with another solitons. The
presence of those configurations is nowadayswell understood
in a wide class of models, presenting or not topological
nature. As examples one can cite the monopoles, textures,
strings and kinks [8].

An important feature of a large number of interesting
nonlinear models is the presence of topologically stable con-
figurations, which prevents them from decaying due to small
perturbations. Among other types of nonlinear field configu-
rations, there is a specially important class of time-dependent
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stable solutions, the breathers appearing in the Sine-Gordon
like models. Another time-dependent field configuration
whose stability is granted for by charge conservation are the
𝑄-balls as baptized by Coleman [9] or nontopological soli-
tons [10]. However, considering the fact that many physical
systems interestingly may present a metastable behavior, a
further class of nonlinear systems may present a very long-
living configuration, usually known as oscillons. This class of
solutions was discovered in the seventies of the last century
by Bogolyubsky and Makhankov [29], and rediscovered pos-
teriorly byGleiser [30].Those solutions, appeared in the study
of the dynamics of first-order phase transitions and bubble
nucleation. Since then, more and more works were dedicated
to the study of these objects [30–48].

Oscillons are quite general configurations and are found
in inflationary cosmological models [30], in the Abelian-
Higgs 𝑈(1)models [31], in the standard model 𝑆𝑈(2) × 𝑈(1)
[32], in axion models [33], in expanding universe scenarios
[34], and in systems involving phase transitions [35].

The usual oscillon aspect is typically that of a bell shape
which oscillates sinusoidally in time. Recently, Amin and Shi-
rokoff [36] have shown that, depending on the intensity of the
coupling constant of the self-interacting scalar field, it is pos-
sible to observe oscillons with a kind of plateau at its top. In
fact, they have shown that these newoscillons aremore robust
against collapse instabilities in three spatial dimensions.

At this point, it is interesting to remark that Segur and
Kruskal [37] have shown that the asymptotic expansion do
not represent in general an exact solution for the scalar
field; in other words, it simply represents an asymptotic
expansion of first order in 𝜖, and it is not valid at all
orders of the expansion. They have also shown that in one
spatial dimension they radiate [37]. In a recent work, the
computation of the emitted radiation of the oscillons was
extended to the case of two and three spatial dimensions [38].
Another important result was put forward by Hertzberg [39].
In that work, he was able to compute the decaying rate of
quantized oscillons, and it was shown that its quantum rate
decay is very distinct of the classical one.

On the other hand, some years ago, Kostelecký and
Samuel [49] started to study the problem of the Lorentz and
CPT (charge conjugation-parity-time reversal) symmetry
breaking. This was motivated by the fact that the superstring
theories suggest that Lorentz symmetry should be violated
at higher energies. After that seminal work, a theoretical
framework about Lorentz and CPT symmetry breaking has
been rigorously developed. As an example, the effects on
the standard model due to the CPT violation and Lorentz
breaking were presented by Colladay and Kostelecký [50].
Recently, a large amount of works considering the impact of
some kind of Lorentz symmetry breaking has appeared in
the literature [51–66]. As another example, recently Belich
et al. [52] studied the Aharonov-Bohm-Casher problem with
a nonminimal Lorentz-violating coupling. In that reference,
the authors have shown that the Lorentz violation is respon-
sible by the lifting of the original degeneracies in the absence
of magnetic field, even for a neutral particle.

By introducing a dimensional reduction procedure to
(1 + 2) dimensions presented in [53], Casana, Carvalho, and

Ferreira applied the approach to investigate the dimensional
reduction of the CPT-even electromagnetic sector of the
standard model extension. Another important work was pre-
sented by Boldo et al. [54], where the problem of Lorentz
symmetry violation gauge theories in connectionwith gravity
models was analyzed. In a very recent work, Kostelecký and
Mewes [55] also analyzed the effects of Lorentz violation in
neutrinos.

In recent years, investigations about topological defects
in the presence of Lorentz symmetry violation have been
addressed in the literature [56–58]. Works have also been
done onmonopole and vortices in Lorentz violation scenarios
[59]. For instance, in [59], a question about the Lorentz sym-
metry violation on BPS vortices was investigated. In that
paper, the Lorentz violation allows a control of the radial
extension and of the magnetic field amplitude of the Abrik-
osov-Nielsen-Olesen vortices.

In fact, Lorentz invariance is the most fundamental sym-
metry of the standard model of particle physics and it has
been very well verified in several experiments. But, it is
important to remark that we cannot be sure that this, or any
other, symmetry is exact.Their consequences shall be verified
through experimental data. This affirmation is encouraged
due to the fact that there exist some experimental tests of
the Lorentz invariance being carried in low energies, in other
words, energies smaller than 14 Tev. Thus, from this fact, we
can suspect that at high energies the Lorentz invariance could
not be preserved. As an example, in the string theory there is
a possibility that we could be living in a universe which is gov-
erned by noncommutative coordinates [67]. In this scenario
it was shown in [68] that the Lorentz invariance is broken.

Furthermore, in a cosmological scenario, the occurrence
of high energy cosmic rays above the Greisen-Zatsepin-
Kuzmin (GZK) cutoff [69] or super GZK events has been
found in astrophysical data [70]. This event indicates the
possibility of a Lorentz violation [71].

The impact of Lorentz violation on the cosmological
scenario is very important, because several of its weaknesses
could be easily explained by the Lorentz violation. For
instance, it was shown by Bekenstein [72] that the problem
of the dark matter is associated with the Lorentz violating
gravity and in [73] Lorentz violation also is used to clarify
the dark energy problem. Nowadays, the breaking of the
Lorentz symmetry is a fabulous mechanism for description
of several problems and conflicts in cosmology, such as
the baryogenesis, primordial magnetic field, nucleosynthesis,
and cosmic rays [74].

In the inflationary scenariowith Lorentz violation, Kanno
and Soda [75] have shown that Lorentz violation affects the
dynamics of the inflationarymodel. In this case, those authors
showed that, using a scalar-vector-tensor theory with Lorentz
violation, the exact Lorentz violation inflationary solutions
are found in the absence of the inflaton potential. Therefore,
the inflation can be connected with the Lorentz violation.

Here, it is convenient to us to emphasize that the inflation
is the fundamental ingredient to solve both the horizons as
the flatness problems of the standard model of the very early
universe. Approximately 10

−33 seconds after the inflation,
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the inflaton decays to radiation, where quarks, leptons, and
photons were coupled to each other. In this case, the baryonic
matter was prevented from forming. Therefore, approxi-
mately 1.388 × 1012 seconds after the Big Bang, the universe
has cooled enough to allow photons to freely travel through
the universe. After that, matter has become dominant in the
universe.

At this point, it is important to remark that the postinfla-
tionary universe is governed by real scalar fields where non-
linear interactions are present.Thus, it was shown in [76] that
oscillons can easily dominate the postinflationary universe.
In that work, it was demonstrated that the postinflationary
universe can contain an effective matter-dominated phase,
during which it is dominated by localized concentrations of
scalar field matter. Furthermore, in a very recent work [77],
a class of inflationary models was introduced, giving rise to
oscillons configurations. In this case, it was argued that these
oscillons could dominate the matter density of the universe
for a given time. Thus, one could naturally wonder about the
effect of Lorentz violation over this scenario.

Thus, in this work we are interested in answering the fol-
lowing issues. Can oscillons and breathers exist in scenarios
with Lorentz violation symmetry? If oscillons and breathers
exist in these scenarios, how is their profile changed? Further-
more, what happens with the lifetime of the oscillons?

Therefore, in this paper, we will show that oscillons and
breathers can be found in Lorentz violation scenarios; our
study is performed by using Lorentz violation theories rigor-
ously derived in the literature [50, 78]. As a consequence, the
principal goal here is to analyze the case of two nonlinearly
coupled scalar fields case. However, we use a constructive
approach, so that we start by studying the cases of one scalar
field models and, then, use those results in the study we are
primarily interested in.

This paper is organized as follows. In Section 2 we present
the description of the Lagrangian density for a real scalar field
in the presence of a Lorentz violation scenario. In Section 3
we calculate the respective commutation relations of the
Poincaré group in the standard-model extension (SME) in a
1+1-dimensional flatMinkowski space-time.Theapproach of
the equation of motion is given in Section 4. Usual oscillons
in the background of the Lorentz violation is analyzed in
Section 5. In Section 6 we will find the flat-top oscillons
which violate the Lorentz symmetry. The breathers solutions
are presented in Section 7. We discuss the outgoing radiation
by oscillons in Section 8. In Section 9 we will present the
oscillons in a two-scalar field theory. Finally, we summarize
our conclusions in Section 10.

2. Standard-Model Extension Lagrangian

In this section, we present a scalar field theory in a 3 + 1-
dimensional flatMinkowski space-time, but here we consider
a break of the Lorentz symmetry. In low energy, Lorentz, and
CPT symmetries the standard model (SM) of particle physics
is experimentally well supported, but in high energies the
superstring theories suggest that Lorentz symmetry should be
violated, and in this context, the framework to study Lorentz
andCPT violation is the so-called standard-model extension.

In the description of the SME, the Lagrangian density for a
real scalar field containing Lorentz violation (LV), which can
be read as a simplified version of the Higgs model, is given by
[50, 78]
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where 𝜑 is a real scalar field, 𝑘𝜇] is a dimensionless tensor
which controls the degree of Lorentz violation, and 𝑉(𝜑)

is the self-interaction potential. It is important to remark
that, some years ago [56], this Lagrangian density was used
to study defect structures in Lorentz and CPT violating
scenarios. In that case, the authors showed that the violation
of Lorentz and CPT symmetries is responsible by the appear-
ance of an asymmetry between defects and antidefects. This
was generalized in [56]. Furthermore, one similar Lagrangian
density has been applied in the study on the renormalization
of the scalar and Yukawa field theories with Lorentz violation.
In that case, it was shown that a LV theorywith𝑁 scalar fields,
interacting through a 𝜙4 interaction, can be written as
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As a simple example, those authors showed for 𝐾𝑖
𝜇] =

𝐾
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𝜇

𝛿
0

] that the dispersion relation is given by 𝐸 =

√𝑝2 − 𝐾𝑖
00

(𝑝0)
2

+ 𝜆2, which is implied in a LV. Therefore,
using explicit calculations, the quantum corrections in the
above LV theory was studied, and these results show that the
theory is renormalizable.

Now, returning to (1), we canwrite the Lagrangian density
in the following form:

L =
1

2
(𝜂
𝜇]
+ 𝑘
𝜇]
) 𝜕
𝜇

𝜑𝜕]𝜑 − 𝑉 (𝜑) . (3)

In this case, the Minkowski metric is modified from 𝑔
𝜇]

to 𝜂
𝜇]
+ 𝑘
𝜇], which is responsible for the breaking of the

Lorentz symmetry [50, 78, 79]. At this point, it is possible to
apply an appropriate linear transformation of the space-time
variable 𝑥𝜇, in order to map the above Lagrangian density
into a Lorentz-like covariant form, but this leads to changes
in the fields and coupling constants of the potential.Thus, the
coupling constants and the fields are rescaled in function of
the 𝑘𝜇] parameters.

Clearly, as a final product, the LV and Lorentz invari-
ant Lagrangians have the same equation of motion. The
fundamental difference between these two equations comes
from the fact that the new variables 𝑥𝜇 carry information of
the Lorentz violations through the 𝑘𝜇] parameters. In other
words, in the transformed variables, the system looks to be
covariant (under boosts of the transformed space-time vari-
ables).However, as a consequence of the fact that the resulting
couplings become not invariant when one changes from a ref-
erence frame to another, there is no real Lorentz invariance.
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For instance, such behavior would be analogous to a change
of the value of the electrical charge when one moves from an
inertial reference frame to another one, which is forbidden.

In the Lagrangian density (1), 𝑘𝜇] is a constant tensor
represented by a 4 × 4 matrix. It is the term which can be
responsible for the breaking of the Lorentz symmetry. Thus,
we write the tensor 𝑘𝜇] in the following form:
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In general 𝑘𝜇] has arbitrary parameters, but it is important
to remark that if this matrix is real, symmetric, and traceless,
the CPT symmetry is kept [50, 78]. Here, we comment that
under CPT operation, 𝜕

𝜇

→ −𝜕
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𝜑𝜕]𝜑. Thus, one notices that 𝑘𝜇] is
always CPT-even, regardless of its properties. Furthermore,
the tensor 𝑘𝜇] should be symmetric in order to avoid a
vanishing contribution.

In a recent work, Anacleto et al. [80] also analyzed a sim-
ilar process to break the Lorentz symmetry, where the tensor
𝑘
𝜇] was used to study the problem of acoustic black holes in

the Abelian-Higgs model with Lorentz symmetry breaking.
In another work by Anacleto et al. [80], the tensor 𝑘

𝜇]

was used to study the superresonance effect from a rotating
acoustic black hole with Lorentz symmetry breaking. Finally,
in a very recent work [57], a generalized two-field model in
1+1-dimensions which presents a constant tensor and vector
functions was introduced. In that case, a class of traveling
solitons in Lorentz and CPT breaking systems was found.

However, we can find systems with Lorentz symmetry
break which has an additional scalar field [79]:

L =
1

2
𝜕
𝜇

𝜑
1

𝜕
𝜇

𝜑
1

+
1

2
𝜕
𝜇

𝜑
2

𝜕
𝜇

𝜑
2

+
1

2
𝑘
𝜇]
𝜕
𝜇

𝜑
1

𝜕]𝜑1

−
𝑚
1

𝜑
2

1

2
−
𝑚
2

𝜑
2

2

2
− 𝑉 (𝜑

1

, 𝜑
2

) .

(5)

In the above Lagrangian density, we have a different coef-
ficient correcting the metric, but the coefficients for Lorentz
violation cannot be removed from the Lagrangian density
using variables or fields redefinitions and observable effects
of the Lorentz symmetry break can be detected in the
above theory. Therefore, theories with fewer fields and fewer
interactions allow more redefinitions and observable effects.

3. SME Lagrangian: One Field Theory (OFT)

In this section, wewill work in a 1+1-dimensionalMinkowski
space-time. Here, we study a scalar field theory in the pres-
ence of a Lorentz violating scenario. The theory that we will
study is given by the Lagrangian density (1).Thus, in this case,
the corresponding Lagrangian density must be as follows:
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At this point, it is important to remark that the Lagran-
gian density clearly has not manifest covariance. Further-
more, it is possible to observe that the covariance is recovered
by choosing 𝑘00 = 𝑘

11

= 0 and 𝑘01 = −𝑘
10 (or 𝑘01 = 𝑘
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= 0).
Other possibilities that do not represent a LV are 𝑘00 = −𝑘

11

and 𝑘01 = −𝑘10 (or 𝑘01 = 𝑘10 = 0).
Now, from the above, we can easily construct the corre-

sponding Hamiltonian density:
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Let us now see how the Poincarè algebra is modified in
this scenario.The idea of the present analysis is to see how the
Poincaré invariance is broken. In other words, verify how this
scenario has the Lorentz symmetry violated. Therefore, for
this we write down the three Poincarè generators, the Hamil-
tonian𝐻, the total momentum 𝑃, and the Lorentz boost𝑀:
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With this, we can calculate the commutation relations of
the Poincarè group. Thus, after straightforward calculations
of the usual commutation relations, it is not difficult to con-
clude that
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From the above relations, we can see that the Poincarè
algebra is not closed, since the usual commutations are not
recovered. As a consequence, in this scenario we have one
violation of the Lorentz symmetry. However, it is possible to
recover the complete commutation relations by taking 𝑘00 =
𝑘
11

= 0 and 𝑘01 = −𝑘
10 (or 𝑘01 = 𝑘

10

= 0). For instance,
making 𝑘00 = 𝑘11 = 0 and 𝑘01 = −𝑘10, we have

[𝐻, 𝑃] = 0, [𝑀,𝐻] = −𝑖𝑃, [𝑀, 𝑃] = −𝑖𝐻. (12)

At this point we can verify that, for the cases 𝑘00 = −𝑘
11

and 𝑘01 = −𝑘10 (or 𝑘01 = 𝑘10 = 0), the commutation relations
(11) lead to
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However, in the above case, we can recover the usual
Poincarè algebra using the rescale 𝑃 = 𝑃̃/𝛼

1

. Thus, such
commutation relations indicate that there is no LV in this
tensor configuration.

In summary, the Lagrangian density (6) has explicit
dependence on the parameters 𝑘00, 𝑘11, 𝑘01, and 𝑘10, which
is responsible for the violation of the Lorentz symmetry. This
happens due to the fact that the Poincaré invariance is not
preserved, as one can see from (11).

4. Equation of Motion in Lorentz Violation
Scenarios: OFT

In this section, we will study the equation of motion in
the presence of the scenario with Lorentz violation of the
previous section. Here, our aim is to study the case in the
1 + 1-dimensional Minkowski space-time. As a consequence,
we will study the theory that is governed by the Lagrangian
density (6). Consequently, the corresponding classical equa-
tion of motion can be written as

𝛼
1

𝜕
2

𝜑 (𝑥, 𝑡)

𝜕𝑡2
− 𝛼
2

𝜕
2

𝜑 (𝑥, 𝑡)

𝜕𝑥2
+ 𝛼
3

𝜕
2

𝜑 (𝑥, 𝑡)

𝜕𝑥𝜕𝑡
+ 𝑉
𝜑

= 0, (14)

where 𝑉
𝜑

≡ 𝜕𝑉/𝜕𝜑. Note that the above equation is carrying
information about the symmetry breaking of the theory.

Here, if one applies the transformation involving the Lor-
entz boost in the above equation of motion, one gets

𝑞
1

𝜕𝜑
2

(𝑥
󸀠

, 𝑡
󸀠

)

𝜕𝑡󸀠2
− 𝑞
2

𝜕𝜑
2

(𝑥
󸀠

, 𝑡
󸀠

)

𝜕𝑥󸀠2
+ 𝑞
3

𝜕𝜑
2

(𝑥
󸀠

, 𝑡
󸀠

)

𝜕𝑥󸀠𝜕𝑡󸀠
+ 𝑉
𝜑

= 0,

(15)

where

𝑥
󸀠

= 𝛾 (𝑥 − V𝑡) , 𝑡
󸀠

= 𝛾 (𝑡 −
V𝑥
𝑐2
) ,

𝛾 =
1

√1 − (V/𝑐)2
,

𝑞
1

= 𝛾
2

(
𝛼
1

𝑐
2

− 𝛼
2

V2 − 𝛼
3

𝑐V
𝑐4

) ,

𝑞
2

= 𝛾
2

(
−𝛼
1

V2 + 𝛼
2

𝑐
2

+ 𝛼
3

𝑐V
𝑐2

) ,

𝑞
3

= 𝛾
2

(
−2V𝛼
1

𝑐 + 2𝑐𝛼
2

V − 𝛼
3

(𝑐
2

+ V2)
𝑐3

) .

(16)

Following the above demonstration, we can see clearly
that this equation is not invariant under boost transforma-
tions. For instance, we can conclude that the possibilities
[𝑘00 = −𝑘

11, 𝑘01 = −𝑘
10] or [𝑘00 = −𝑘

11, 𝑘01 = 𝑘
10

= 0]
lead to the following equations:

𝛼
1

𝑐2

𝜕𝜑
2

(𝑥, 𝑡)

𝜕𝑡2
− 𝛼
1

𝜕𝜑
2

(𝑥, 𝑡)

𝜕𝑥2
+ 𝑉
𝜑

= 0,

𝛼
1

𝑐2

𝜕𝜑
2

(𝑥
󸀠

, 𝑡
󸀠

)

𝜕𝑡󸀠2
− 𝛼
1

𝜕𝜑
2

(𝑥
󸀠

, 𝑡
󸀠

)

𝜕𝑥󸀠2
+ 𝑉
𝜑

= 0.

(17)

Note that there is no modification of the equations; in
other words, the possibilities [𝑘00 = −𝑘

11, 𝑘01 = −𝑘
10] or

[𝑘00 = −𝑘11, 𝑘01 = 𝑘10 = 0] do not represent a genuine factor
for LV.

In order to solve analytically the differential equation
(14) and simultaneously keep the breaking of the Lorentz
symmetry, we must decouple the equation. For this, we apply
the rotation

(
𝑥

𝑡
) = (

cos (𝜃) − sin (𝜃)
sin (𝜃) cos (𝜃)

)(
𝑋

𝑇
) , (18)

where 𝜃 is an arbitrary rotation angle. Thus, (14) in the new
variables is rewritten as

ℎ
1

𝜕
2

𝜑 (𝑋, 𝑇)

𝜕𝑇2
− ℎ
2

𝜕
2

𝜑 (𝑋, 𝑇)

𝜕𝑋2
+ 𝑉
𝜑

= 0, (19)

with the definitions

𝜃 ≡ −
1

2
arctan(

𝛼
3

𝛼
1

+ 𝛼
2

) ,

ℎ
1

≡
𝛼
2

1

− 𝛼
2

2

+ [𝛼
2

3

+ (𝛼
1

+ 𝛼
2

)
2

] cos (2𝜃)
2 (𝛼
1

+ 𝛼
2

)
,

ℎ
2

≡
𝛼
2

2

− 𝛼
2

1

+ [𝛼
2

3

+ (𝛼
1

+ 𝛼
2

)
2

] cos (2𝜃)
2 (𝛼
1

+ 𝛼
2

)
.

(20)
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Note that the rotation angle 𝜃 has been chosen in order
to eliminate the dependence in the term 𝜕

2

𝜑/𝜕𝑋𝜕𝑇. Now,
performing the dilations 𝑇 = √ℎ

1

Υ and𝑋 = √ℎ
2

𝑍, one gets

𝜕
2

𝜑 (𝑍, Υ)

𝜕Υ2
−
𝜕
2

𝜑 (𝑍, Υ)

𝜕𝑍2
+ 𝑉
𝜑

= 0. (21)

From now on we will use the above equation to describe
the profile of oscillons and breathers. It is of great importance
to remark that the above equation has all the information
about the violation of the Lorentz symmetry. In fact, the field
𝜑(𝑍, Υ) carries on the dependence of the parameters that
break the Lorentz symmetry; this information arises from the
fact that new variables 𝑍 and Υ have explicit dependence on
the 𝑘𝜇] elements.

5. Usual Oscillons with Lorentz Violation: OFT

Now, we study the case of a scalar field theory which supports
usual oscillons in the presence of Lorentz violating scenarios.
The profile of the usual oscillons is one in which the spatial
structure is localized in the space and, in the most cases, is
governed by a function of the type sech(𝑥). On the other
hand, the temporal structure is like cos(𝑡), which is periodic.
The theory that we will study is given by the Lagrangian
density (6). In this case, we showed in the last section that
the corresponding classical equation of motion, after some
manipulations, can be represented by (21). Thus, in order
to analyze usual oscillons in this situation, we choose the
potential that was used in [36], which is written as

𝑉 (𝜑) =
1

2
𝜑
2

−
1

4
𝜑
4

+
𝑔

6
𝜑
6

, (22)

where 𝑔 represents a free coupling constant and we will con-
sider a regime where 𝑔 ≫ 1.

Since our primordial interest is to find periodic and
localized solutions, it is useful, as usual in the study of the
oscillons, to introduce the following scale transformations in
𝑡 and 𝑥:

𝜏 = 𝜔Υ, 𝑦 = 𝜖𝑍, (23)

with 𝜔 = √1 − 𝜖2. Thus, the equation of the motion (21)
becomes

𝜔
2

𝜕
2

𝜑 (𝑦, 𝜏)

𝜕𝜏2
− 𝜖
2

𝜕
2

𝜑 (𝑦, 𝜏)

𝜕𝑦2
+ 𝜑 − 𝜑

3

+ 𝑔𝜑
5

= 0. (24)

Nowwe are in a position to investigate the usual oscillons.
But it is important to remark that the fundamental point
is that here we have the effects of the Lorentz symmetry
breaking.We can see this by inspecting the above equation of
motion, which is carrying information about the terms of the
Lorentz breaking through the variables 𝑦 and 𝜏. We observe
that it is possible to recover the original equation of motion
for usual oscillons choosing 𝑘00 = 𝑘

11

= 0 and 𝑘01 = −𝑘
10

(or 𝑘01 = 𝑘
10

= 0). In this case, the Lorentz symmetry is
recovered.

Next we expand 𝜑 as

𝜑 (𝑦, 𝜏) = 𝜖𝜑
1

(𝑦, 𝜏) + 𝜖
3

𝜑
3

(𝑦, 𝜏) + 𝜖
5

𝜑
5

(𝑦, 𝜏) + ⋅ ⋅ ⋅ . (25)

Note that the above expansion has only odd powers of
𝜖; this occurs because the equation is odd in 𝜑. Let us now
substitute this expansion of the scalar field into the equation
of motion (24). This leads to

𝜕
2

𝜑
1

𝜕𝜏2
+ 𝜑
1

= 0, (26)

𝜕
2

𝜑
3

𝜕𝜏2
+ 𝜑
3

−
𝜕
2

𝜑
1

𝜕𝜏2
−
𝜕
2

𝜑
1

𝜕𝑦2
− 𝜑
3

1

= 0. (27)

Therefore, the solution of (26) is of the following form:

𝜑
1

(𝑦, 𝜏) = Φ (𝑦) cos (𝜏) . (28)

Here we call attention to the fact that the solutionmust be
smooth at the origin and vanishingwhen𝑦becomes infinitely
large.

In order to find the solution of Φ(𝑦), let us substitute the
solution obtained for 𝜑

1

(𝑦, 𝜏) into (27).Thus, it is not hard to
conclude that

𝜕
2

𝜑
3

𝜕𝜏2
+ 𝜑
3

= (
𝑑
2

Φ

𝑑𝑦2
− Φ +

3

4
Φ
3

) cos (𝜏) + 1

4
Φ
3 cos (3𝜏) .

(29)

Solving the above equation, we find a termwhich is linear
in the time-like variable 𝜏, resulting in a nonperiodical solu-
tion, and we are interested in solutions which are periodical
in time. Then, to avoid this we will impose that

𝑑
2

Φ

𝑑𝑦2
− Φ +

3

4
Φ
3

= 0. (30)

At this point, one can verify that the above equation can
be integrated to give

(
𝑑Φ

𝑑𝑦
)

2

+ 𝑈 (Φ) = 𝐸, (31)

where 𝑈(Φ) = −Φ
2

+ (3/8)Φ
4. Note that in the above

equation, the arbitrary constant 𝐸 should be set to zero in
order to get solitonic solution.This condition allows the field
configuration to go asymptotically to the vacua of the field
potential 𝑈(Φ). Now, we must solve (31) with 𝐸 = 0. In this
case one gets

Φ(𝑦) =
4√
8

3
[sech (𝑦)]1/2 . (32)

As one can see, up to the order O(𝜖), the corresponding
solution for the field in the original variables is given by

𝜑osc (𝑥, 𝑡) = 𝜖
4√
8

3
(√sech[𝜖 [𝑥 cos (𝜃) + 𝑡 sin (𝜃)]

√ℎ
2

])

× cos[𝜔 [−𝑥 sin (𝜃) + 𝑡 cos (𝜃)]
√ℎ
1

] + O (𝜖
3

) .

(33)
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Figure 1: Profile of the usual oscillons in 1 + 1-dimensions with Lorentz and CPT breaking for 𝑡 = 0 (left) and 𝑡 = 1250 (right) with 𝜖 = 0.01.
The thin line corresponds to the case with 𝑘

00

= 0.12, 𝑘
11

= 0.30, 𝑘
01

= 0.27, and 𝑘
10

= 0.21 and the thick line to the case with 𝑘
𝜇] = 0.

The profile of the above solution is plotted in Figure 1
for some values of the 𝑘𝜇] parameters. In Figure 1 we see the
profile of the usual oscillon in the presence of the background
of the Lorentz breaking symmetry. In this case, one can
check that the dependence of the solution on the Lorentz
breaking parameters is responsible for a kind of deformation
of the configuration, where the field configuration becomes
oscillatory in a localized region near its maximum value.
Furthermore, in the course of the time, it is possible to
observe that the Lorentz breaking symmetry produces a dis-
placement of the oscillon along the spatial direction. In this
case we will call these configurations as “enveloped oscillons”,
since in 𝑡 = 0 the new configuration is enveloped by the
oscillon with Lorentz symmetry.

Moreover, one can note that if one wants to recover the
Lorentz symmetry, it is necessary to impose that 𝑘00 = 𝑘11 = 0
and 𝑘01 = −𝑘10 (or 𝑘01 = 𝑘10 = 0).

6. Flat-Top Oscillons with Lorentz
Violation: OFT

Some years ago, a new class of oscillons, which is character-
ized by a kind of plateau at its top, was presented by Amin
and Shirokoff [36]. In that work, the authors have shown that
this configuration has an important impact on an expanding
universe.Thus, in this section, we will describe the impacts of
the Lorentz violation over the flat-top oscillons.Wewill study
the case in 1 + 1-dimensional Minkowski space-time where
the classical equation ofmotion is given by (21). Also, in order
to analyze the flat-top oscillons in this scenario, we choose the
potential that was used in [36], which is represented in (22).

Now, we begin a direct attack to the problem of finding
the flat-top oscillons. Likewise to the procedure presented
in [36], we introduce a re-scaled scalar field by 𝜑(𝑍, Υ) =

𝜙(𝑦, 𝜏)/√𝑔, where 𝑍 = √𝑔𝑦, 𝜏 = 𝜛Υ and 𝜛 = √1 − 𝛼2/𝑔.
It is important to remark that the constant 𝛼2 is responsible
by the change in the frequency, its presence comes from the

nonlinear potential. Thus, it is not difficult to conclude that
the classical equation of motion can be rewritten as

(𝜕
2

𝜏

𝜙 + 𝜙) + 𝑔
−1

[−𝛼
2

𝜕
2

𝜏

𝜙 − 𝜕
2

𝑦

𝜙 − 𝜙
3

+ 𝜙
5

] = 0. (34)

So, we are in a position to investigate the so-called flat-top
oscillons. But it is important to remark that the fundamental
point is that all the effects of the Lorentz symmetry breaking
are present implicitly in the classical field. Of course, it is
possible to recover the original equation of motion presented
by Amin and Shirokoff [36] through a suitable choice of 𝑘𝜇].

Let us go further on our search for flat-top oscillons. For
this, we expand 𝜙 as

𝜙 (𝑦, 𝜏) = 𝜙
1

(𝑦, 𝜏) + 𝑔
−1

𝜙
3

(𝑦, 𝜏) + ⋅ ⋅ ⋅ . (35)

If we substitute the above expansion of the scalar field into
the equation of motion (34), and collect the terms in order
O(1) and O(𝑔−1), we find

𝜕
2

𝜙
1

𝜕𝜏2
+ 𝜙
1

= 0, (36)

𝜕
2

𝜙
3

𝜕𝜏2
+ 𝜙
3

− 𝛼
2

𝜕
2

𝜙
1

𝜕𝜏2
−
𝜕
2

𝜙
1

𝜕𝑦2
− 𝜙
3

1

+ 𝜙
5

1

= 0. (37)

Therefore, the solution of (36) is of the form

𝜙
1

(𝑦, 𝜏) = Ψ (𝑦) cos (𝜏) . (38)

In order to find the solution of Ψ(𝑦) let us substitute the
solution obtained for 𝜙

1

(𝑦, 𝜏) into (37). Thus, it is not hard to
conclude that

𝜕
2

𝜙
3

𝜕𝜏2
+ 𝜙
3

= (
𝑑
2

Ψ

𝑑𝑦2
− 𝛼
2

Ψ +
3

4
Ψ
3

−
5

8
Ψ
5

) cos (𝜏)

+ (
3

4
Ψ
3

−
5

16
Ψ
5

) cos (3𝜏) − Ψ
5

16
cos (5𝜏) ,

(39)
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whose solution can be written as

𝜙
3

(𝑦, 𝜏) =
1

8
[4𝐺 (𝑦) − 2𝐻 (𝑦) + 8𝑐

1

] cos (𝜏)

− 𝐻 (𝑦) cos (3𝜏) + 4 [𝐺 (𝑦) 𝜏 + 2𝑐
2

] sin (𝜏) ,
(40)

where we defined that 𝐺(𝑦) ≡ ((𝑑2Ψ/𝑑𝑦2) − 𝛼2Ψ+ (3/4)Ψ
3

−

(5/8)Ψ
5

) and𝐻(𝑦) ≡ ((3/4)Ψ3 − (5/16)Ψ5). Furthermore, 𝑐
1

and 𝑐
2

are arbitrary integration constants.
Since that the solution of the function 𝜙

3

has a term
which is linear in the variable 𝜏, resulting into a non-
periodical solution, and we are interested in solutions which
are periodical in time, we will impose that 𝐺(𝑦) vanishes. As
a consequence, we get

𝑑
2

Ψ

𝑑𝑦2
= (𝛼
2

Ψ −
3

4
Ψ
3

+
5

8
Ψ
5

) . (41)

At this point, one can verify that the above equation has
the same profile of the equation presented in [36]. Therefore,
this equation can be integrated to give

1

2
(
𝑑Ψ

𝑑𝑦
)

2

+ 𝑈 (Ψ) = 𝐸, (42)

where𝑈(Ψ) = −(1/2)𝛼2Ψ2 + (3/16)Ψ4 − (5/48)Ψ6. Note that,
in the above equation, the arbitrary constant 𝐸 should be set

to zero in order to get solitonic solution.This condition allows
the field configuration to go asymptotically to the vacua of the
field potential𝑈(Ψ). On the other hand, it is usual to impose
that the profile of Ψ(𝑦) should be smooth at 𝑦 = 0, and then
it is necessary to make 𝑑Ψ(0)/𝑑𝑦 = 0. As a consequence 𝐸 =

𝑈(Ψ
0

) = 0, which implies

𝛼
2

=
3

8
Φ
2

0

−
5

24
Φ
4

0

, (43)

with Ψ
0

≡ Ψ(0). Thus, solving the above equation in Ψ
0

, we
have a critical value 𝑎 ≤ 𝛼

𝑐

= √27/160. Above this critical
value, Ψ

0

becomes imaginary.
Now, we must solve (42) with 𝐸 = 0. In this case, we have

𝑑Ψ

√𝛼2Ψ2 − (3/8)Ψ4 + (5/24)Ψ6
= 𝑑𝑦. (44)

From this, it follows that

Ψ (𝑦) =
(𝑢
4√4V𝑢)

√2√V + cosh [2𝑦√𝑢V (𝛼2
𝑐

− 𝛼2)]

, (45)

where V = 27/[160(𝛼2
𝑐

− 𝛼
2

)] and 𝑢 = (V − 1)/V.
As one can see, up to the order O(1), the corresponding

solution for the field in the original variables is given by

𝜑
𝐹𝑇

(𝑥, 𝑡) =
𝑢
4√4V𝑢

√2𝑔√V + 𝑔 cosh {2 [𝑥 cos (𝜃) + 𝑡 sin (𝜃)]√𝑢V (𝛼2
𝑐

− 𝛼2)/√𝑔ℎ
2

}

× cos{𝜛 [−𝑥 sin (𝜃) + 𝑡 cos (𝜃)]
√ℎ
1

} + O (𝑔
−3/2

) .

(46)

The profile of the above solution is plotted in Figure 2.
In Figure 2, we see the profile of the flat-top oscillon in the
presence of the background of the Lorentz breaking symme-
try. In this case, one can check that the dependence of the
solution on the Lorentz breaking parameters is responsible
for a control of the size of the oscillon plateau. Thus, by
measuring thewidth of the oscillon one could be able to verify
the existence and the degree of the breaking of the symmetry.
In Figure 3, we see the typical profile of the flat-top oscillon.

There one can note that the energy density becomes
more localized close to the origin when the Lorentz breaking
increases.

7. Breathers with Lorentz Violation: OFT

We will now construct the profile of a breather in a 1 + 1-
dimensional Minkowski space-time. Again, we will use the

classical equation of motion (21).The breather solutions arise
from the sine-Gordon model:

𝑉 (𝜑) =
𝛾

𝛽
[1 − cos (𝛽𝜑)] . (47)

The sine-Gordon model is invariant under 𝜑 → 𝜑 +

2𝑛𝜋, where 𝑛 is an integer number. In this case, the classical
equation of motion is

𝜕
2

𝜑 (𝑍, Υ)

𝜕Υ2
−
𝜕
2

𝜑 (𝑍, Υ)

𝜕𝑍2
+ 𝛾 sin (𝛽𝜑) = 0. (48)

The above equation can be solved by the inverse-
scattering method [81]. Thus, after straightforward calcula-
tions, we conclude that the breather solution is given by

𝜑
𝐵

(𝑍, Υ) =
4

𝛽
arctan[[

[

√𝛾 − 𝑤2 sin (𝑤Υ)

𝑤 cosh (𝑍√𝛾 − 𝑤2)

]
]

]

, (49)
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Figure 2: Profile of the flat-top oscillons in 1 + 1-dimensions with Lorentz symmetry breaking for 𝑡 = 0 (left) and 𝑡 = 200 (right) with 𝑔 = 5.
The thin line corresponds to the case with 𝑘
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Figure 3: Typical profile of the flat-top oscillon.The left-hand figure corresponds to the case with Lorentz breaking symmetry and the right-
hand figure to the one with Lorentz symmetry.

where𝑤 is the frequency of oscillation and describes different
breathers. In Figures 4 and 5 we show the behavior of the
above solution.

8. Radiation of Oscillons with Lorentz
Violation Symmetry: OFT

An important characteristic of the oscillons is its radiation
emission. In a seminal work by Segur and Kruskal [37], it was
shown that oscillons in one spatial dimension decay emitting
radiation. Recently, the computation of the emitted radiation
in two and three spatial dimensions was done in [38]. On
the other hand, in a recent paper by Hertzberg [39], it was
found that the quantum radiation is very distinct of the classic
one. It is important to remark that the author has shown that
the amplitude of the classical radiation emitted can be found
using the amplitude of the Fourier transform of the spatial
structure of the oscillon.

Thus, in this section, we describe the outgoing radiation
in scenarios with Lorentz violation symmetry. Here, we will
establish a method in 1 + 1-dimensional Minkowski space-
time that allows computing the classical radiation of oscillons
in scenarios with Lorentz symmetry breaking.This is done by
following themethod presented in [39].Thismethod suggests
that we can write the solution of the classical equation of
motion in the following form:

𝜑sol (𝑥, 𝑡) = 𝜑osc (𝑥, 𝑡) + 𝜂 (𝑥, 𝑡) , (50)

where 𝜑osc(𝑥, 𝑡) is the oscillon solution and 𝜂(𝑥, 𝑡) represents
a small correction. Let us substitute this decomposition of the
scalar field into the equation of motion (14). This leads to

𝛼
1

𝜕
2

𝜑osc
𝜕𝑡2

− 𝛼
2

𝜕
2

𝜑osc
𝜕𝑥2

+ 𝛼
3

𝜕
2

𝜑osc
𝜕𝑥𝜕𝑡

+ 𝛼
1

𝜕
2

𝜂

𝜕𝑡2

− 𝛼
2

𝜕
2

𝜂

𝜕𝑥2
+ 𝛼
3

𝜕
2

𝜂

𝜕𝑥𝜕𝑡
+ 𝑈 (𝜑osc, 𝜂) = 0,

(51)
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Figure 4: Profile of the breathers 1 + 1-dimensions with Lorentz symmetry breaking for 𝑡 = 0 (left) and 𝑡 = 10 (right) with V = 2, 𝑤 = 1, and
𝛽 = 1. The thin line corresponds to the case with 𝑘
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Figure 5: Density plot of a Breather. Solution with Lorentz symmetry breaking (left) and to the one Lorentz symmetry (right).

where 𝑈(𝜑osc, 𝜂) is a function which depends on the form of
𝑉
𝜑sol
(𝜑sol). In order to decouple the above equation, we apply

the rotation (18) and the dilations 𝑇 = √ℎ
1

Υ and𝑋 = √ℎ
2

𝑍.
Thus, we find

𝜕
2

𝜑osc (𝑍, Υ)

𝜕Υ2
−
𝜕
2

𝜑osc (𝑍, Υ)

𝜕𝑍2
+
𝜕
2

𝜂 (𝑍, Υ)

𝜕Υ2

−
𝜕
2

𝜂 (𝑍, Υ)

𝜕𝑍2
+ 𝑈 (𝜑osc, 𝜂) = 0.

(52)

From the above equation, it is possible to find the solution
for 𝜂(𝑍, Υ) which carries the dependence on the parameters

that break the Lorentz symmetry. We want to investigate the
model given by (22); then, we have

𝑈(𝜑osc, 𝜂) = 𝜑osc + 𝜂 − 𝜑
3

osc − 𝜂
3

+ 3𝜑
2

osc𝜂 + 3𝜑osc𝜂
2

+ 𝑔 (𝜑
5

osc + 𝜂
5

+ 10𝜑
2

osc𝜂
3

+ 10𝜑
3

osc𝜂
2

+ 5𝜑osc𝜂
4

+ 5𝜑
4

osc𝜂) .

(53)

As 𝜂 represents a small correction, we assume that the
nonlinear terms 𝜂2, 𝜂3, 𝜂4, and 𝜂5 and the parametric driving
terms 3𝜂𝜑2osc and 5𝑔𝜂𝜑

4

osc can be neglected. At this point,
it is important to remark that the parametric driven terms
were not considered because we are working in an asymptotic
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regime where 𝜑osc is also small. In this case, (52) takes the
form

𝜕
2

𝜂 (𝑍, Υ)

𝜕Υ2
−
𝜕
2

𝜂 (𝑍, Υ)

𝜕𝑍2
+ 𝜂 (𝑍, Υ) = −𝐽 (𝑍, Υ) , (54)

where

𝐽 (𝑍, Υ) =
𝜕
2

𝜑osc (𝑍, Υ)

𝜕Υ2
−
𝜕
2

𝜑osc (𝑍, Υ)

𝜕𝑍2

+ 𝜑osc (𝑍, Υ) − 𝜑
3

osc (𝑍, Υ) + 𝑔𝜑
5

osc (𝑍, Υ) .

(55)

We can use the Fourier transform for solving differential
equation (54) where 𝐽(𝑍, Υ) acts as a source. With this in
mind, we write down the Fourier integral transforms

𝜂 (𝑅, 𝑤) =
1

√2𝜋
∫𝑑𝑍𝑑Υ𝜂 (𝑍, Υ)

× exp [−𝑖 (𝑅𝑍 − 𝑤Υ)] ,

𝐽 (𝑅, 𝑤) =
1

√2𝜋
∫𝑑𝑍𝑑Υ𝐽 (𝑍, Υ)

× exp [−𝑖 (𝑅𝑍 − 𝑤Υ)] .

(56)

Then, we have the corresponding solution

𝜂 (𝑍, Υ) =
1

√2𝜋
∫𝑑𝑅𝑑𝑤𝜂 (𝑅, 𝑤)

× exp [𝑖 (𝑅𝑍 − 𝑤Υ)] ,

(57)

where

𝜂 (𝑅, 𝑤) = −
𝐽 (𝑅, 𝑤)

𝑅2 − (𝑤2 + 1)
. (58)

From the above approach, it is possible to find the radi-
ation field for the oscillons. As a consequence of the method,
the oscillons expansion must be truncated.

8.1. SME Usual Oscillons Radiation: OFT. In this subsection,
we will study the outgoing radiation of the usual oscillons in a
Lorentz violation scenario. In this case, the oscillon expansion
truncated in order𝑁 is given by

𝜑 (𝑦, 𝜏) = 𝜖𝜑
1

(𝑦, 𝜏) + 𝜖
3

𝜑
3

(𝑦, 𝜏) + 𝜖
5

𝜑
5

(𝑦, 𝜏)

+ ⋅ ⋅ ⋅ + 𝜖
𝑁

𝜑
𝑁

(𝑦, 𝜏) .

(59)

As an example, we will consider 𝑁 = 1. This is the case
where the field configuration corresponds to the oscillon

𝜑osc (𝑦, 𝜏) = 𝜖𝜑1 (𝑦, 𝜏) . (60)

Substituting (60) in (55), we obtain

𝐽 (𝑍, Υ) = (
4√
8

3
) 𝜖
3

[sech (𝜖𝑍)]3/2 cos (3𝜔Υ) . (61)

Thus, for𝑁 = 1we can solve easily the integral (57) which
allows finding 𝜂(𝑍, Υ).Therefore, we can generalize the result
to 𝑁 substituting the expansion (59) in (55) and using the
differential equation (24). After the calculations, the result is

𝐽 (𝑍, Υ) = 𝐶
𝑁

𝜖
𝑁+2

[sech (𝜖𝑍)]𝑁+1/2 cos (𝑛𝜔Υ) + ⋅ ⋅ ⋅ , (62)

where 𝐶
𝑁

are constant coefficients. For instance, for 𝑁 = 1

we have 𝐶
1

=
4√8/3. Next we calculate 𝜂(𝑍, Υ) as given by

(57). After straightforward computations, one can conclude
that

𝜂 (𝑍, Υ) =
𝜋√𝜋𝐶

𝑁

𝜖
𝑁+2

𝑘rad
cos (𝜔radΥ)

× sin (𝑘rad𝑍)∫𝑑𝑍 [sech (𝜖𝑍)]
𝑁+1/2 cos (𝑘rad𝑍) ,

(63)

where

𝜔rad = 𝑛𝜔, 𝑘rad = √𝜔
2

rad − 1. (64)

On expression (63), we note that there is an outgoing
radiation which has an amplitude described by the integral

𝐴 (𝑘rad) =
𝜋√𝜋𝐶

𝑁

𝜖
𝑁+2

𝑘rad

× ∫𝑑𝑍 [sech (𝜖𝑍)]𝑁+1/2 cos (𝑘rad𝑍) ,

(65)

and we also note that the radiation has frequency 𝜔rad and
wave number 𝑘rad. We can make use of the above general-
ization to calculate the amplitude of radiation of the usual
oscillons in Lorentz violation scenario. For instance, for𝑁 =

1, we have

𝐴 (𝑘rad) =
4𝜋√2𝜋𝐶

1

𝜖
3

𝑘rad

× [𝑏
1

𝐹 (𝑎
1

, 𝑎
2

, 𝑎
3

, −1) + 𝑏
∗

1

𝐹 (𝑎
1

, 𝑎
∗

2

, 𝑎
∗

3

, −1)] ,

(66)

where𝐹(𝑎
1

, 𝑎
2

, 𝑎
3

, −1) and𝐹(𝑎
1

, 𝑎
∗

2

, 𝑎
∗

3

, −1) are hypergeomet-
ric functions with

𝑏
1

=
1

3𝜖 − 2𝑖𝑘rad
, 𝑎

1

=
3

2
,

𝑎
2

=
3

4
−
𝑖𝑘rad
2𝜖

, 𝑎
3

=
7

4
−
𝑖𝑘rad
2𝜖

.

(67)

In Figure 6 we see how the amplitude of the outgoing
radiation changes with the parameters of 𝑘𝜇]. From Figure 1,
it can be seen that the amplitude of the outgoing radiation of
the oscillons is controlled by the terms of the Lorentz break-
ing of the model, in such a way that the radiation amplitude
will decay faster when the Lorentz breaking increases.
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Figure 6: Amplitude of the outgoing radiation determined by the Fourier transform.The left-hand figure corresponds to the casewith Lorentz
breaking symmetry and the right-hand to the case with Lorentz symmetry.

8.2. SME Flat-Top Oscillons Radiation: OFT. We will now
present the outgoing radiation by the flat-top oscillons in Lor-
entz violation scenario. Here, the associated oscillon expan-
sion truncated in𝑁 is defined as

𝜑 (𝑦, 𝜏) = 𝜑
1

(𝑦, 𝜏) +
1

𝑔
𝜑
3

(𝑦, 𝜏)

+
1

𝑔2
𝜑
5

(𝑦, 𝜏) + ⋅ ⋅ ⋅ +
1

𝑔𝑁−1
𝜑
2𝑁−1

(𝑦, 𝜏) .

(68)

Substituting the above expansion in (55), we have that

𝐽 (𝑍, Υ)

= 𝐶
𝑁

× 𝐶
𝑁

{{{

{{{

{

(𝑢
4√4V𝑢)

√2𝑔√V + 𝑔 cosh[2𝑍√𝑢V(𝛼2
𝑐

− 𝛼2)/√𝑔]

}}}

}}}

}

𝑁+2

× cos (𝑛𝜔Υ) + ⋅ ⋅ ⋅ ,
(69)

where 𝐶
𝑁

are constant coefficients. Now we calculate 𝜂(𝑍, Υ)
as given by (57). After straightforward computations, one can
conclude that

𝜂 (𝑍, Υ)

=
𝜋√𝜋𝐶

𝑁

𝑘rad
cos (𝜔radΥ) sin (𝑘rad𝑍)

× ∫𝑑𝑍

{{{

{{{

{

(𝑢
4√4V𝑢)

√2𝑔√V + 𝑔 cosh[2𝑍√𝑢V𝑔(𝛼2
𝑐

− 𝛼2)]

}}}

}}}

}

𝑁+2

× cos (𝑘rad𝑍) ,
(70)

where

𝜔rad = 𝑛𝜔, 𝑘rad = √𝜔
2

rad − 1. (71)

From the above expression, we see that there is an out-
going radiation which has its amplitude described by the
integral

𝐴 (𝑘rad) =
𝜋√𝜋𝐶

𝑁

𝑘rad
∫𝑑𝑍 cos (𝑘rad𝑍)

×

{{{

{{{

{

(𝑢
4√4V𝑢)

√2√V + cosh[2𝑍√𝑢V(𝛼2
𝑐

− 𝛼2)/√𝑔]

}}}

}}}

}

𝑁+2

.

(72)

We can make use of the above generalization to calculate
the amplitude of radiation of the flat-top oscillons in Lorentz
violation scenario. For instance, for𝑁 = 1, we have

𝐴 (𝑘rad) =
4𝜋𝐶
𝑁

𝐴
0

𝑘rad
(
𝑢
4√4V𝑢
√𝑔

)

3

(𝜉
1

F
𝑎

+ 𝜉
∗

1

F
𝑏

) , (73)

where F
𝑎

= F(Ω
1

; Ω
2

; Ω
2

; Ω
3

, Ω
4

, Ω
5

) and F
𝑏

= F(Ω
∗

1

;

Ω
2

; Ω
2

; Ω
∗

3

, Ω
4

, Ω
5

) are the Appell hypergeometric functions
of two variables and

𝐴
0

= 2√
𝑢V (𝛼2
𝑐

− 𝛼
2

)

√𝑔
, 𝜉

1

= 3 +
2𝑖𝑘rad
𝐴
0

,

Ω
1

=
3

2
−
𝑖𝑘rad
𝐴
0

, Ω
2

=
3

2
, Ω

3

=
5

2
−
𝑖𝑘rad
𝐴
0

,

Ω
4

= √𝐴2
0

− 1 − 𝐴
0

, Ω
5

=
1

√𝐴2
0

− 1 − 𝐴
0

.

(74)

In this case, we see that the amplitude of the outgoing
radiation changes with the parameters 𝑘𝜇]. We can see that
the amplitude of the outgoing radiation of the oscillons is
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controlled by the terms of the Lorentz breaking of the model,
in such way that the radiation amplitude will decay faster
when the Lorentz breaking increases.

9. Oscillons with LV: Two-Field Theory (TFT)

We have seen in Section 2 that the most important scenario
with LV is that described by a theory with two scalar fields,
because it is possible to find observable effects of the LV.
Then, in this section, we study a two-scalar field theory in the
presence of a LV scenario. The theory that we will study is
similar to that given by Potting [79]. Here, we will work with
the corresponding Lagrangian density

L =
1

2
𝜕
𝜇

𝜑
1

𝜕
𝜇

𝜑
1

+
1

2
𝜕
𝜇

𝜑
2

𝜕
𝜇

𝜑
2

+
1

2
𝑘
𝜇]
𝜕
𝜇

𝜑
1

𝜕]𝜑2 − 𝑉 (𝜑1, 𝜑2) ,

(75)

where 𝑉(𝜑
1

, 𝜑
2

) is the interaction potential. For example, in
order to find oscillons solutions, we can choose the potential
in the form

𝑉 (𝜑
1

, 𝜑
2

) =
𝑔

3
(𝜑
6

1

+ 𝜑
6

2

) −
1

2
(𝜑
4

1

+ 𝜑
4

2

)

+ 𝜑
2

1

+ 𝜑
2

2

+ 5𝑔 (𝜑
4

1

𝜑
2

2

+ 𝜑
2

1

𝜑
4

2

) − 3𝜑
2

1

𝜑
2

2

.

(76)

In order to decouple the Lagrangian density (75), we apply
the rotation

(
𝜑
1

𝜑
2

) =
1

2
(
1 1

1 −1
)(

𝜎
1

𝜎
2

) . (77)

After straightforward computations, one can conclude
that

L =
1

2
𝜕
𝜇

𝜎
1

𝜕
𝜇

𝜎
1

+
1

2
𝑘
𝜇]
1

𝜕
𝜇

𝜎
1

𝜕]𝜎1

+
1

2
𝜕
𝜇

𝜎
2

𝜕
𝜇

𝜎
2

+
1

2
𝑘
𝜇]
2

𝜕
𝜇

𝜎
2

𝜕]𝜎2 − 𝑉 (𝜎1, 𝜎2) ,

(78)

where

𝑘
𝜇]
1

=
1

4
𝑘
𝜇]
, 𝑘

𝜇]
2

= −
1

4
𝑘
𝜇]
, (79)

and the potential is

𝑉 (𝜎
1

, 𝜎
2

) = 𝑉 (𝜎
1

) + 𝑉 (𝜎
2

) , (80)

with

𝑉 (𝜎
𝑖

) =
𝑔

6
𝜎
6

𝑖

−
1

4
𝜎
4

𝑖

+
1

2
𝜎
2

𝑖

, 𝑖 = 1, 2. (81)

It is important to note that applying the rotations in the
fields, the Lagrangian density was decoupled into two inde-
pendent LagrangiansL = ∑

2

𝑖=1

L
𝑖

, where

L
𝑖

=
1

2
𝜕
𝜇

𝜎
𝑖

𝜕
𝜇

𝜎
𝑖

+
1

2
𝑘
𝜇]
𝑖

𝜕
𝜇

𝜎
𝑖

𝜕]𝜎𝑖 − 𝑉 (𝜎𝑖) . (82)

We can see that all the preceding approaches and results
can be used here to find the fields 𝜎

1

and 𝜎
2

. Another impor-
tant point that it is convenient to remark at this point comes
from the fact that any variable 𝑥

𝜇 redefinition will carry
information of the parameter 𝑘𝜇] which is responsible by LV.

As we are working in 1 + 1-dimensions, the Lagrangian
(82) becomes

L
(1+1)

𝑖

=
1

2
𝑎
𝑖

(𝜕
𝑡

𝜎
𝑖

)
2

−
1

2
𝑏
𝑖

(𝜕
𝑥

𝜎
𝑖

)
2

+
1

2
𝑑
𝑖

𝜕
𝑡

𝜎
𝑖

𝜕
𝑥

𝜎
𝑖

− 𝑉 (𝜎
𝑖

) , 𝑖 = 1, 2.

(83)

In this case, we have

𝑎
𝑖

≡ (1 + 𝑘
00

𝑖

) , 𝑏
𝑖

≡ (1 − 𝑘
11

𝑖

) , 𝑑
𝑖

≡ (𝑘
01

𝑖

+ 𝑘
10

𝑖

) .

(84)

Now it is quite clear why the Lagrangian density (75) is
more important and general than the one described by (1) first
because the commutation relations of the Poincarè group is
not closed, indicating a Lorentz violation and second because
it is impossible to perform coordinate changes to eliminate
the LV parameters in (78), because if we apply a coordinate
change in order to write the Lagrangian in an covariant form,
only one of the sectors will stay invariant.

Now, by using the approaches described in Section 4, we
find the following equations:

𝜕
2

𝜎
𝑖

(𝑍
𝑖

, Υ
𝑖

)

𝜕Υ2
𝑖

−
𝜕
2

𝜎
𝑖

(𝑍
𝑖

, Υ
𝑖

)

𝜕𝑍2
𝑖

+ 𝑉
𝜎

𝑖

= 0, (85)

where

𝑍
𝑖

=
𝑥 cos (𝜃

𝑖

) + 𝑡 sin (𝜃
𝑖

)

√𝐿
𝑖

,

Υ
𝑖

=
−𝑥 sin (𝜃

𝑖

) + 𝑡 cos (𝜃
𝑖

)

√𝐻
𝑖

.

(86)

With the set

𝜃
𝑖

= −
1

2
arctan(

𝑑
𝑖

𝑎
𝑖

+ 𝑏
𝑖

) ,

𝐿
𝑖

=
𝑏
2

𝑖

− 𝑎
2

𝑖

+ [𝑑
2

𝑖

+ (𝑎
𝑖

+ 𝑏
𝑖

)
2

] cos (2𝜃
𝑖

)

2 (𝑎
𝑖

+ 𝑏
𝑖

)
,

𝐻
𝑖

=
𝑎
2

𝑖

− 𝑏
2

𝑖

+ [𝑑
2

𝑖

+ (𝑎
𝑖

+ 𝑏
𝑖

)
2

] cos (2𝜃
𝑖

)

2 (𝑎
𝑖

+ 𝑏
𝑖

)
.

(87)

Fortunately, we can find periodical solutions for the fields
𝜎
1

and 𝜎
2

from (85). In this case, we are looking for oscillons-
like solutions. These solutions were presented in Sections 5
and 6. Thus, from those sections we can show that
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𝜎
(USUAL)
𝑖

(𝑥, 𝑡)

= 𝜖
𝑖

4√
8

3
(√sech{

𝜖
𝑖

[𝑥 cos (𝜃
𝑖

) + 𝑡 sin (𝜃
𝑖

)]

√𝐿
𝑖

})

× cos{
𝜔
𝑖

[−𝑥 sin (𝜃
𝑖

) + 𝑡 cos (𝜃
𝑖

)]
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𝑖

} + O (𝜖
3

𝑖

) ,

𝜎
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𝑖

) + 𝑡 sin (𝜃
𝑖

)]√𝑢
𝑖

V
𝑖

(𝛼2
𝑐

− 𝛼2
𝑖

)/√𝑔𝐿
𝑖

}

× cos{
𝜛
𝑖

[−𝑥 sin (𝜃
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) + 𝑡 cos (𝜃
𝑖
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−3/2
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In the above solutions, 𝜎(USUAL)
𝑖

represents the usual oscillons
and 𝜎(FLAT-TOP)

𝑖

are the flat-top ones. Furthermore, we have

𝜔
𝑖

= √1 − 𝜖2
𝑖

, 𝜛
𝑖

= √1 −
𝛼
2

𝑖

𝑔
,

V
𝑖

=
27

[160 (𝛼2
𝑐

− 𝛼2
𝑖
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, 𝑢

𝑖

=
(V
𝑖

− 1)

V
𝑖

.
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As above asserted, the original scalar fields 𝜑
1

and 𝜑
2

are
obtained from the fields 𝜎

1

and 𝜎
2

in the following form:

𝜑
1

=
𝜎
1

+ 𝜎
2

2
, 𝜑

2

=
𝜎
1

− 𝜎
2

2
. (90)

It is important to remark that the resulting solutions do
not present merely algebraic relation between 𝜎

𝑖

and the
original parameters of the theory but essentially lead to
physical consequences. As one can see, there are two kinds
of frequencies which can be combined for each scalar field 𝜑

𝑖

.
This means that their solutions can be considered as a super-
position of two independent fields and, as a consequence,
we can have interference phenomena in the structure of the
oscillon.

An important question concerns the stability of the solu-
tions; given that each field 𝜑

𝑖

is a combination of the fields
𝜎
𝑖

, the stability and longevity of the oscillons are guaranteed.
From a mathematical point of view, one can think that the
original fields consist of linear combinations of 𝜎

𝑖

. The same
occurs when we calculated the outgoing radiation, and in
that case we have two radiation fields 𝜂

1

and 𝜂
2

, which are
independent solutions with small resulting amplitudes. As a
consequence, their linear combinations, 𝜂

1

= 𝜂
1

+ 𝜂
2

and
𝜂
2

= 𝜂
1

− 𝜂
2

, will give the radiation field of solutions 𝜑
𝑖

.
Therefore, as 𝜂

𝑖

are very small solutions, we still have the
stability and longevity of the solutions guaranteed.

10. Conclusions

In this work we have investigated the so-called flat-top oscil-
lons in the case of Lorentz breaking scenarios.We have shown
that the Lorentz violation symmetry is responsible for the
appearance of a kind of deformation of the configuration.
On the order hand, from inspection of the results coming
from the flat-top oscillons in 1 + 1-dimensions with Lorentz
breaking in comparison with the flat-top given in [36], one
can see that the oscillons are carrying information about the
terms of the Lorentz breaking of the model; in this case by
taking 𝑘00 = 𝑘

11

= 0 and 𝑘01 = −𝑘
10 (or 𝑘01 = 𝑘

10

= 0),
one recovers the solution presented in [36]. Furthermore, this
can lead one to obtain the degree of symmetry breaking by
measuring the width of the oscillon in 1+1-dimensions. One
important question about the nonlinear solution is related
to its stability. Thus, we studied the solutions found here by
using the procedure introduced by Hertzberg [36, 39]. We
concluded that the radiation emitted by these oscillons is
controlled by the terms of the Lorentz breaking of the model,
in such a way that the radiation will decay more quickly as
the terms become larger. Finally, all the results obtained for
the case of one scalar field model are promptly extended for
the case of doublets of nonlinearly coupled scalar fields.

Moreover, it is important to highlight that the bounds
in Lorentz violation theories in the standard model are very
small and are compatible with the stability observed for the
oscillons here introduced. On the other hand, observable
effects of these oscillons in the real world are possible, for
instance, in a cosmological context. In that case, the life time
of these oscillons can be decisive in the generation of coherent
structures after cosmic inflation [82, 83], where it was shown
that oscillons can contribute up to 20% of the energy density
of the Universe. Thus, in this scenario, one should find
bounds on the Lorentz violation which will open a new
window to detect observable effects of breaking Lorentz sym-
metry.This possibility is encouraged by the fact that the break
of the Lorentz symmetry induces a kind of beat phenomenon
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in the structure of the outgoing radiation, in contrast with
the Lorentz invariant case (see Figure 6). In this way, in a real
world, one can detect the difference in the frequency of the
outgoing radiation, effect that would indicate the presence
of a violation of the Lorentz symmetry. Therefore, in order
to deal with these questions, we are presently working in
a future work where oscillons in cosmological backgrounds
with Lorentz symmetry breaking are presented.
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