In this work we group three research topics apparently disconnected, namely
solitons, Lorentz symmetry breaking and entropy. Following a recent work [Phys.
Lett. B 713 (2012) 304], we show that it is possible to construct in the
context of travelling wave solutions a configurational entropy measure in
functional space, from the field configurations. Thus, we investigate the
existence and properties of travelling solitons in Lorentz and CPT breaking
scenarios for a class of models with two interacting scalar fields. Here, we
obtain a complete set of exact solutions for the model studied which display
both double and single-kink configurations. In fact, such models are very
important in applications that include Bloch branes, Skyrmions, Yang-Mills,
Q-balls, oscillons and various superstring-motivated theories. We find that the
so-called Configurational Entropy (CE) for travelling solitons, which we name
as travelling Configurational Entropy (TCE), shows that the best value of
parameter responsible to break the Lorentz symmetry is one where the energy
density is distributed equally around the origin. In this way, the
information-theoretical measure of travelling solitons in Lorentz symmetry
violation scenarios opens a new window to probe situations where the parameters
responsible for breaking the symmetries are random. In this case, the TCE
selects the best value