128 research outputs found

    Vertical transmission of honey bee viruses in a Belgian queen breeding program

    Get PDF
    Background: The Member States of European Union are encouraged to improve the general conditions for the production and marketing of apicultural products. In Belgium, programmes on the restocking of honey bee hives have run for many years. Overall, the success ratio of this queen breeding programme has been only around 50%. To tackle this low efficacy, we organized sanitary controls of the breeding queens in 2012 and 2014. Results: We found a high quantity of viruses, with more than 75% of the egg samples being infected with at least one virus. The most abundant viruses were Deformed Wing Virus and Sacbrood Virus (>= 40%), although Lake Sinai Virus and Acute Bee Paralysis Virus were also occasionally detected (between 10-30%). In addition, Aphid Lethal Paralysis Virus strain Brookings, Black Queen Cell Virus, Chronic Bee Paralysis Virus and Varroa destructor Macula-like Virus occurred at very low prevalences (<= 5%). Remarkably, we found Apis mellifera carnica bees to be less infected with Deformed Wing Virus than Buckfast bees ( p < 0.01), and also found them to have a lower average total number of infecting viruses ( p < 0.001). This is a significant finding, given that Deformed Wing Virus has earlier been shown to be a contributory factor to winter mortality and Colony Collapse Disorder. Moreover, negative-strand detection of Sacbrood Virus in eggs was demonstrated for the first time. Conclusions: High pathogen loads were observed in this sanitary control program. We documented for the first time vertical transmission of some viruses, as well as significant differences between two honey bee races in being affected by Deformed Wing Virus. Nevertheless, we could not demonstrate a correlation between the presence of viruses and queen breeding efficacies

    Unbiased RNA shotgun metagenomics in social and solitary wild bees detects associations with eukaryote parasites and new viruses

    Get PDF
    The diversity of eukaryote organisms and viruses associated with wild bees remains poorly characterized in contrast to the well-documented pathosphere of the western honey bee, Apis mellifera. Using a deliberate RNA shotgun metagenomic sequencing strategy in combination with a dedicated bioinformatics workflow, we identified the (micro-)organisms and viruses associated with two bumble bee hosts, Bombus terrestris and Bombus pascuorum, and two solitary bee hosts, Osmia corn uta and Andrena vaga. Ion Torrent semiconductor sequencing generated approximately 3.8 million high quality reads. The most significant eukaryote associations were two protozoan, Apicystis bombiand Crithidia bombi, and one nematode parasite Sphaerularia bombi in bumble bees. The trypanosome protozoan C. bombi was also found in the solitary bee 0. corn uta. Next to the identification of three honey bee viruses Black queen cell virus, Sacbrood virus and Varroa destructor virus-1 and four plant viruses, we describe two novel RNA viruses Scaldis River bee virus (SRBV) and Ganda bee virus (GABV) based on their partial genomic sequences. The novel viruses belong to the class of negative-sense RNA viruses, SRBV is related to the order Mononegavirales whereas GABV is related to the family Bunyaviridae. The potential biological role of both viruses in bees is discussed in the context of recent advances in the field of arthropod viruses. Further, fragmentary sequence evidence for other undescribed viruses is presented, among which a nudivirus in 0. corn uta and an unclassified virus related to Chronic bee paralysis virus in B. terrestris. Our findings extend the current knowledge of wild bee parasites in general and addsto the growing evidence of unexplored arthropod viruses in valuable insects

    Comprehensive bee pathogen screening in Belgium reveals Crithidia mellificae as a new contributory factor to winter mortality

    Get PDF
    Since the last decade, unusually high honey bee colony losses have been reported mainly in North-America and Europe. Here, we report on a comprehensive bee pathogen screening in Belgium covering 363 bee colonies that were screened for 18 known disease-causing pathogens and correlate their incidence in summer with subsequent winter mortality. Our analyses demonstrate that, in addition to Varroa destructor, the presence of the trypanosomatid parasite Crithidia mellificae and the microsporidian parasite Nosema ceranae in summer are also predictive markers of winter mortality, with a negative synergy being observed between the two in terms of their effects on colony mortality. Furthermore, we document the first occurrence of a parasitizing phorid fly in Europe, identify a new fourth strain of Lake Sinai Virus (LSV), and confirm the presence of other little reported pathogens such as Apicystis bombi, Aphid Lethal Paralysis Virus (ALPV), Spiroplasma apis, Spiroplasma melliferum and Varroa destructor Macula-like Virus (VdMLV). Finally, we provide evidence that ALPV and VdMLV replicate in honey bees and show that viruses of the LSV complex and Black Queen Cell Virus tend to non-randomly co-occur together. We also noticed a significant correlation between the number of pathogen species and colony losses. Overall, our results contribute significantly to our understanding of honey bee diseases and the likely causes of their current decline in Europe

    Factors restraining the population growth of Varroa destructor in Ethiopian honey bees (Apis mellifera simensis)

    Get PDF
    Worldwide, the ecto-parasitic mite Varroa destructor has been assigned as an important driver of honey bee (Apis mellifera) colony losses. Unlike the subspecies of European origin, the honey bees in some African countries such as Uganda and Ethiopia may not be as threatened or suffer less from mite-infestations. However, only little is known about the factors or traits that enable them to co-exist with the mite without beekeepers' intervention. Hence, this study was designed to investigate these factors or traits that limit the Varroa mite population in Ethiopian honey bees (Apis mellifera simensis). The study was conducted in the primary honey producing region of Ethiopia, i.e. Tigray. Mite infestation levels were shown to be lower in traditional hives (when compared to framed hives) and when colonies were started up from swarm catching (when compared to colony splitting). However, the influence of the comb cell size on mite infestation was not observed. With respect to the bee biology, the hygienic behavior was shown to be high (pin-test: 92.2% removal in 24 hours) and was negatively correlated with phoretic mite counts (Pearson; r = -0.79; P < 0.01) and mite infestation levels in brood (Pearson; r = -0.46; P < 0.001). Efforts to estimate the Varroa mite reproductive capacity were seriously hampered by an extremely low brood infestation level. From the 133 founder mites found (in 6727 capped brood cells) only 18.80% were capable of producing a reproductive progeny. Failure to produce adult male progeny was unexpectedly high (79.70%). We have suggested a few adaptations to the test protocols allowing to estimate the protective traits of honey bee colonies under very low Varroa pressure. Apart from that, this study demonstrates that the honey bees from Ethiopia are suitable targets to further decipher the genetic predisposition of resistance against V. destructor. It is still unclear to what extent simensis differs from the more common scutellata subspecies

    Nosema neumanni n. sp. (Microsporidia, Nosematidae), a new microsporidian parasite of honeybees, Apis mellifera in Uganda

    Get PDF
    The microsporidium Nosema neumanni n. sp., a new parasite of the honeybee Apis mellifera is described based on its ultra structural and molecular characteristics. Structures resembling microsporidian spores were found by microscopic examination of honeybees from Uganda. Molecular confirmation failed when PCR primers specific for Nosema apis and Nosema ceranae were used, but was successful with primers covering the whole family of Nosematidae. We performed transmission electron microscopy and found typical microsporidian spores which were smaller (length: 2.36 +/- 0.14 m and width: 1.78 +/- 0.06 p.m; n = 6) and had fewer polar filament coils (10-12) when compared to those of known species infecting honeybees. The entire 16S SS(J rRNA region was amplified, cloned and sequenced and was found to be unique with the highest resemblance (97% identity) to N. apis, The incidence of N. neumanni n. sp. in Ugandan honeybees was found to be much higher than of the two other Nosema species

    Effect of bodily fluids from honey bee (Apis mellifera) larvae on growth and genome-wide transcriptional response of the causal agent of American Foulbrood disease (Paenibacillus larvae)

    Get PDF
    Paenibacillus larvae, the causal agent of American Foulbrood disease (AFB), affects honey bee health worldwide. The present study investigates the effect of bodily fluids from honey bee larvae on growth velocity and transcription for this Grampositive, endospore-forming bacterium. It was observed that larval fluids accelerate the growth and lead to higher bacterial densities during stationary phase. The genome-wide transcriptional response of in vitro cultures of P. larvae to larval fluids was studied by microarray technology. Early responses of P. larvae to larval fluids are characterized by a general downregulation of oligopeptide and sugar transporter genes, as well as by amino acid and carbohydrate metabolic genes, among others. Late responses are dominated by general down-regulation of sporulation genes and up-regulation of phage-related genes. A theoretical mechanism of carbon catabolite repression is discussed
    corecore