63 research outputs found

    Targeting Amino Acid Metabolic Vulnerabilities in Myeloid Malignancies

    Get PDF
    Tumor cells require a higher supply of nutrients for growth and proliferation than normal cells. It is well established that metabolic reprograming in cancers for increased nutrient supply exposes a host of targetable vulnerabilities. In this article we review the documented changes in expression patterns of amino acid metabolic enzymes and transporters in myeloid malignancies and the growing list of small molecules and therapeutic strategies used to disrupt amino acid metabolic circuits within the cell. Pharmacological inhibition of amino acid metabolism is effective in inducing cell death in leukemic stem cells and primary blasts, as well as in reducing tumor burden in in vivo murine models of human disease. Thus targeting amino acid metabolism provides a host of potential translational opportunities for exploitation to improve the outcomes for patients with myeloid malignancies

    Personality and dissociative experiences in smartphone users

    Get PDF
    The aim of this study was to explore the relationship between Problematic Smartphone Use (PSU), dissociative experiences and some characteristics of personality. The sample consisted of 400 Italian college students aged between 20 and 24 (M = 21.59, SD = 1.43). The materials included: a questionnaire on the use of smartphones, the Smartphone Addiction Scale (SAS-SV), the Dissociative Experience Scale (DES), and the Ten Item Personality Inventory (TIPI). Results showed that the college students in our sample used their smartphones mainly for messaging (50%), calling (42.5%), accessing the internet (38%), connecting via social networks (33.5%), taking photos (26.5%), gaming (8.5%) and using applications (.5%). According to the results of the SAS-SV, 70% of our sample showed PSU, without gender differences. Regarding the correlation with personality factors, intensive use of smartphones corresponds to lower emotional stability and the extraversion or 'energy' factor is predictive near the significance cut-off (p = .06), while among the dissociative experiences, passive influence and dissociative amnesia are the best predictors of smartphone addiction. The other variables are less significant (p = .07). The results underline the importance of detecting the PSU predictors in college students, in order to prevent psychopathological consequences

    Metabolic therapy with PEG-arginase induces a sustained complete remission in immunotherapy-resistant melanoma

    Get PDF
    Background Metastatic melanoma is an aggressive skin cancer with a poor prognosis. Current treatment strategies for high-stage melanoma are based around the use of immunotherapy with immune checkpoint inhibitors such as anti-PDL1 or anti-CTLA4 antibodies to stimulate anti-cancer T cell responses, yet a number of patients will relapse and die of disease. Here, we report the first sustained complete remission in a patient with metastatic melanoma who failed two immunotherapy strategies, by targeting tumour arginine metabolism. Case presentation A 65-year-old patient with metastatic melanoma who progressed through two immunotherapy strategies with immune checkpoint inhibitor antibodies was enrolled in a phase I study (NCT02285101) and treated with 2 mg/kg intravenously, weekly pegylated recombinant arginase (BCT-100). The patient experienced no toxicities > grade 2 and entered a complete remission which is sustained for over 30 months. RNA-sequencing identified a number of transcriptomic pathway alterations compared to control samples. The tumour had absent expression of the recycling enzymes argininosuccinate synthetase (ASS) and ornithine transcarbamylase (OTC) indicating a state of arginine auxotrophy, which was reconfirmed by immunohistochemistry, and validation in a larger cohort of melanoma tumour samples. Conclusions Targeting arginine metabolism with therapeutic arginase in arginine auxotrophic melanoma can be an effective salvage for the treatment of patients who fail immunotherapy

    MDSC targeting with Gemtuzumab ozogamicin restores T cell immunity and immunotherapy against cancers

    Get PDF
    Background: Targeting of MDSCs is a major clinical challenge in the era of immunotherapy. Antibodies which deplete MDSCs in murine models can reactivate T cell responses. In humans such approaches have not developed due to difficulties in identifying targets amenable to clinical translation. Methods: RNA-sequencing of M-MDSCs and G-MDSCs from cancer patients was undertaken. Flow cytometry and immunohistochemistry of blood and tumours determined MDSC CD33 expression. MDSCs were treated with Gemtuzumab ozogamicin and internalisation kinetics, and cell death mechanisms determined by flow cytometry, confocal microscopy and electron microscopy. Effects on T cell proliferation and CAR-T cell anti-tumour cytotoxicity were identified in the presence of Gemtuzumab ozogamicin. Findings: RNA-sequencing of human M-MDSCs and G-MDSCs identified transcriptomic differences, but that CD33 is a common surface marker. Flow cytometry indicated CD33 expression is higher on M-MDSCs, and CD33+ MDSCs are found in the blood and tumours regardless of cancer subtype. Treatment of human MDSCs leads to Gemtuzumab ozogamicin internalisation, increased p-ATM, and cell death; restoring T cell proliferation. Anti-GD2-/mesothelin-/EGFRvIII-CAR-T cell activity is enhanced in combination with the anti-MDSC effects of Gemtuzumab ozogamicin. Interpretation: The study identifies that M-MDSCs and G-MDSCs are transcriptomically different but CD33 is a therapeutic target on peripheral and infiltrating MDSCs across cancer subtypes. The immunotoxin Gemtuzumab ozogamicin can deplete MDSCs providing a translational approach to reactivate T cell and CAR-T cell responses against multiple cancers. In the rare conditions of HLH/MAS gemtuzumab ozogamicin provides a novel anti-myeloid strategy. Fund: This work was supported by Cancer Research UK, CCLG, Treating Children with Cancer, and the alumni and donors to the University of Birmingham. (c) 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

    Neratinib could be effective as monotherapy or in combination with trastuzumab in HER2-low breast cancer cells and organoid models

    Get PDF
    Background: Previous studies have suggested that patients with HER2-low breast cancers do not benefit from trastuzumab treatment although the reasons remain unclear. Methods: We investigated the effect of trastuzumab monotherapy and its combination with different HER2 targeting treatments in a panel of breast cancer cell lines and patient-derived organoids (PDOs) using biochemical methods and cell viability assays. Results: Compared to sensitive HER2 over-expressing (IHC3 + ) breast cancer cells, increasing doses of trastuzumab could not achieve IC50 in MDA-MB-361 (IHC 2 + FISH + ) and MDA-MB-453 (IHC 2 + FISH-) cells which showed an intermediate response to trastuzumab. Trastuzumab treatment induced upregulation of HER ligand release, resulting in the activation of HER receptors in these cells, which could account for their trastuzumab insensitivity. Adding a dual ADAM10/17 inhibitor to inhibit the shedding of HER ligands in combination with trastuzumab only showed a modest decrease in the cell viability of HER2-low breast cancer cells and PDOs. However, the panHER inhibitor neratinib was an effective monotherapy in HER2-low breast cancer cells and PDOs, and showed additive effects when combined with trastuzumab. Conclusion: This study demonstrates that neratinib in combination with trastuzumab may be effective in a subset of HER2-low breast cancers although further validation is required in a larger panel of PDOs and in future clinical studies

    Neratinib could be effective as monotherapy or in combination with trastuzumab in HER2-low breast cancer cells and organoid models

    Get PDF
    BACKGROUND: Previous studies have suggested that patients with HER2-low breast cancers do not benefit from trastuzumab treatment although the reasons remain unclear.METHODS: We investigated the effect of trastuzumab monotherapy and its combination with different HER2 targeting treatments in a panel of breast cancer cell lines and patient-derived organoids (PDOs) using biochemical methods and cell viability assays.RESULTS: Compared to sensitive HER2 over-expressing (IHC3 + ) breast cancer cells, increasing doses of trastuzumab could not achieve IC50 in MDA-MB-361 (IHC 2 + FISH + ) and MDA-MB-453 (IHC 2 + FISH-) cells which showed an intermediate response to trastuzumab. Trastuzumab treatment induced upregulation of HER ligand release, resulting in the activation of HER receptors in these cells, which could account for their trastuzumab insensitivity. Adding a dual ADAM10/17 inhibitor to inhibit the shedding of HER ligands in combination with trastuzumab only showed a modest decrease in the cell viability of HER2-low breast cancer cells and PDOs. However, the panHER inhibitor neratinib was an effective monotherapy in HER2-low breast cancer cells and PDOs, and showed additive effects when combined with trastuzumab.CONCLUSION: This study demonstrates that neratinib in combination with trastuzumab may be effective in a subset of HER2-low breast cancers although further validation is required in a larger panel of PDOs and in future clinical studies.</p

    Arginine dependence of acute myeloid leukaemia blast proliferation: a novel therapeutic target

    Get PDF
    Acute myeloid leukemia (AML) is one of the most common acute leukemias in adults and children, yet significant numbers of patients relapse and die of disease. In this study, we identify the dependence of AML blasts on arginine for proliferation. We show that AML blasts constitutively express the arginine transporters CAT-1 and CAT-2B, and that the majority of newly diagnosed patients' blasts have deficiencies in the arginine-recycling pathway enzymes argininosuccinate synthase and ornithine transcarbamylase, making them arginine auxotrophic. BCT-100, a pegylated human recombinant arginase, leads to a rapid depletion in extracellular and intracellular arginine concentrations, resulting in arrest of AML blast proliferation and a reduction in AML engraftment in vivo. BCT-100 as a single agent causes significant death of AML blasts from adults and children, and acts synergistically in combination with cytarabine. Using RNA sequencing, 20 further candidate genes which correlated with resistance have been identified. Thus, AML blasts are dependent on arginine for survival and proliferation, as well as depletion of arginine with BCT-100 of clinical value in the treatment of AML

    Neuroblastoma arginase activity creates an immunosuppressive microenvironment that impairs autologous and engineered immunity

    Get PDF
    Neuroblastoma is the most common extra cranial solid tumour of childhood, and survival remains poor for patients with advanced disease. Novel immune therapies are currently in development, but clinical outcomes have not matched preclinical results. Here, we describe key mechanisms in which neuroblastoma inhibits the immune response. We show that murine and human neuroblastoma tumour cells suppress T cell proliferation, through increased arginase activity. Arginase II is the predominant isoform expressed and creates an arginine deplete local and systemic microenvironment. Neuroblastoma arginase activity results in inhibition of myeloid cell activation and suppression of bone marrow CD34+ progenitor proliferation. Finally we demonstrate that the arginase activity of neuroblastoma impairs NY-ESO-1 specific TCR and GD2-specific CAR engineered T cell proliferation and cytotoxicity. High arginase II expression correlates with poor survival for neuroblastoma patients. The results support the hypothesis that neuroblastoma creates an arginase-dependent immunosuppressive microenvironment in both the tumour and blood that leads to impaired immune surveillance and sub-optimal efficacy of immunotherapeutic approaches

    G-CSF induces CD15(+) CD14(+) cells from granulocytes early in the physiological environment of pregnancy and the cancer immunosuppressive microenvironment

    Get PDF
    OBJECTIVES: Recombinant granulocyte colony‐stimulating factor (G‐CSF) is frequently administered to patients with cancer to enhance granulocyte recovery post‐chemotherapy. Clinical trials have also used G‐CSF to modulate myeloid cell function in pregnancy and inflammatory diseases. Although the contribution of G‐CSF to expanding normal granulocytes is well known, the effect of this cytokine on the phenotype and function of immunosuppressive granulocytic cells remains unclear. Here, we investigate the impact of physiological and iatrogenic G‐CSF on an as yet undescribed granulocyte phenotype and ensuing outcome on T cells in the settings of cancer and pregnancy. METHODS: Granulocytes from patients treated with recombinant G‐CSF, patients with late‐stage cancer and women enrolled on a trial of recombinant G‐CSF were phenotyped by flow cytometry. The ability and mechanism of polarised granulocytes to suppress T‐cell proliferation were assessed by cell proliferation assays, flow cytometry and ELISA. RESULTS: We observed that G‐CSF leads to a significant upregulation of CD14 expression on CD15(+) granulocytes. These CD15(+)CD14(+) cells are identified in the blood of patients with patients undergoing neutrophil mobilisation with recombinant G‐CSF, and physiologically in women early in pregnancy or in those treated as a part of a clinical trial. Immunohistochemistry of tumor tissue or placental tissue identified the expression of G‐CSF. The G‐CSF upregulates the release of reactive oxygen species (ROS) in CD15(+)CD14(+) cells leading to the suppression of T‐cell proliferation. CONCLUSIONS: G‐CSF induces a population of ROS(+) immunosuppressive CD15(+)CD14(+) granulocytes. Strategies for how recombinant G‐CSF can be scheduled to reduce effects on T‐cell therapies should be developed in future clinical studies

    Targeting the arginine metabolic brake enhances immunotherapy for leukaemia

    Get PDF
    Therapeutic approaches which aim to target Acute Myeloid Leukaemia through enhancement of patients’ immune responses have demonstrated limited efficacy to date, despite encouraging preclinical data. Examination of AML patients treated with azacitidine (AZA) and vorinostat (VOR) in a Phase II trial, demonstrated an increase in the expression of Cancer‐Testis Antigens (MAGE, RAGE, LAGE, SSX2 and TRAG3) on blasts and that these can be recognised by circulating antigen‐specific T cells. Although the T cells have the potential to be activated by these unmasked antigens, the low arginine microenvironment created by AML blast Arginase II activity acts a metabolic brake leading to T cell exhaustion. T cells exhibit impaired proliferation, reduced IFN‐γ release and PD‐1 up‐regulation in response to antigen stimulation under low arginine conditions. Inhibition of arginine metabolism enhanced the proliferation and cytotoxicity of anti‐NY‐ESO T cells against AZA/VOR treated AML blasts, and can boost anti‐CD33 Chimeric Antigen Receptor‐T cell cytotoxicity. Therefore, measurement of plasma arginine concentrations in combination with therapeutic targeting of arginase activity in AML blasts could be a key adjunct to immunotherapy
    • 

    corecore