11 research outputs found

    Temporal Changes of Seismic Velocity Caused by Volcanic Activity at Mt. Etna Revealed by the Autocorrelation of Ambient Seismic Noise

    Get PDF
    On active volcanoes, ambient noise-based seismic interferometry, able to detect very slight variations in seismic velocity associated with magma transport towards the surface, can be a very useful monitoring tool. In this work, we performed the autocorrelation of ambient seismic noise recorded at Mt. Etna volcano, by three stations located close to the active summit craters, during April 2013 - October 2014. Such an interval was chosen because of the number and variety of eruptions. The method implemented to perform autocorrelation was the phase cross-correlation, which does not require normalization of the signals. The detected seismic velocity variations were very consistent for all three stations throughout the study period, mainly ranging between 0.3 and -0.2%, and were time-related to both sequences of paroxysmal eruptions and more effusive activities. In particular, we observed seismic velocity decreases accompanying paroxysmal eruptions, suggesting an intense pressurization within the plumbing system, which created an area of extensional strain with crack openings. It is worth noting that classical cross-station approach failed to detect seismic velocity changes related to volcano activity. In addition, seismic velocity variations over time were integrated with ground deformation data recorded by GPS stations and volcanic tremor centroid locations. Finally, we showed that, although the investigated frequency band (1-2 Hz) contains most of the volcanic tremor energy, our results did not indicate a particular contamination of seismic velocity variation measurements by variations of tremor sources

    Monitoring extreme meteo-marine events in the Mediterranean area using the microseism (Medicane Apollo case study)

    Get PDF
    Microseism is the continuous background seismic signal caused by the interaction between the atmosphere, the hydrosphere and the solid Earth. Several studies have dealt with the relationship between microseisms and the tropical cyclones, but none focused on the small-scale tropical cyclones that occur in the Mediterranean Sea, called Medicanes. In this work, we analysed the Medicane Apollo which impacted the eastern part of Sicily during the period 25 October–5 November 2021 causing heavy rainfall, strong wind gusts and violent sea waves. We investigated the microseism accompanying this extreme Mediterranean weather event, and its relationship with the sea state retrieved from hindcast maps and wave buoys. The spectral and amplitude analyses showed the space–time variation of the microseism amplitude. In addition, we tracked the position of Apollo during the time using two different methods: (i) a grid search method; (ii) an array analysis. We obtained a good match between the real position of Apollo and the location constraint by both methods. This work shows that it is possible to extract information on Medicanes from microseisms for both research and monitoring purposes.peer-reviewe

    Microseism and medicane Apollo : a new approach to investigate the Mediterranean extreme weather events

    Get PDF
    Microseism is the most continuous and ubiquitous seismic signal on the Earth and is caused by the interaction between the atmosphere, the hydrosphere and the Solid Earth. In literature, there are several studies that deal with the relationship between microseism and cyclonic activity considering in particular hurricanes, tropical cyclones and typhoons. However, the relationships between microseism and the small-scale tropical cyclones that occur in the Mediterranean Sea, called Medicanes, have never been analysed. For this reason, we considered the Medicane Apollo, which developed in the Ionian Sea and impacted the eastern part of Sicily during the period 25th October to 5th November 2021 causing heavy rainfall (> 400 mm/48h), strong wind gusts (104 km/h) and violent sea waves (significant wave height > 3.5 m). Furthermore, the heavy rainfall induced by the presence of Apollo, caused damage to infrastructure and agriculture forcing the Sicilian regional government to declare a state of emergency for 32 municipalities (in the provinces of Catania, Messina, Siracusa and Ragusa) that were mostly affected by the Medicane Apollo.peer-reviewe

    Single station Monitoring of Volcanoes Using Seismic ambient noise

    Get PDF
    Seismic ambient noise cross correlation is increasingly used to monitor volcanic activity. However, this method is usually limited to volcanoes equipped with large and dense networks of broadband stations. The single station approach may provide a powerful and reliable alternative to the classical “cross-stations” approach when measuring variation of seismic velocities. We implemented it on the Piton de la Fournaise in Reunion Island, a very active volcano with a remarkable multi-disciplinary continuous monitoring. Over the past decade, this volcano was increasingly studied using the traditional cross-correlation technique and therefore represents a unique laboratory to validate our approach. Our results, tested on stations located up to 3.5 km from the eruptive site, performed as well as the classical approach to detect the volcanic eruption in the 1-2 Hz frequency band. This opens new perspectives to successfully forecast volcanic activity at volcanoes equipped with a single 3-component seismometer

    Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures

    Get PDF
    Human activity causes vibrations that propagate into the ground as high-frequency seismic waves. Measures to mitigate the COVID-19 pandemic caused widespread changes in human activity, leading to a months-long reduction in seismic noise of up to 50%. The 2020 seismic noise quiet period is the longest and most prominent global anthropogenic seismic noise reduction on record. While the reduction is strongest at surface seismometers in populated areas, this seismic quiescence extends for many kilometers radially and hundreds of meters in depth. This provides an opportunity to detect subtle signals from subsurface seismic sources that would have been concealed in noisier times and to benchmark sources of anthropogenic noise. A strong correlation between seismic noise and independent measurements of human mobility suggests that seismology provides an absolute, real-time estimate of population dynamics

    Extracting Microseismic Ground Motion From Legacy Seismograms

    No full text
    Before digital recordings became available in the 1970s, the ground motion was recorded using ink on white paper, scratching black-smoked paper, or light on photographic paper. While those analog seismic records offer unique continuous observations from the last century, most of them are now stacked and archived in boxes and potentially exposed to physical decay and permanent loss. To preserve those records and ultimately subject them to modern methods of analysis, it is time-sensitive to scan and digitize them. Here, we worked on a method for automatic digitization of paper seismograms using image processing and machine learning to extract microseismic ground-motion periods and amplitudes. We implemented the method on legacy data recorded at the Royal Observatory of Belgium to extract power spectral densities for major storms during the last century, which are compared with modeled microseisms levels computed using a numerical ocean wave model. This further shows how digitizing analog seismograms does not only preserve the scientific legacy but also makes new research possible by bringing analog data to the digital age.info:eu-repo/semantics/publishe
    corecore