3,182 research outputs found

    Combined Effect of Fatty Diet and Cognitive Decline on Brain Metabolism, Food Intake, Body Weight, and Counteraction by Intranasal Insulin Therapy in 3Ă—Tg Mice

    Get PDF
    Obesity and cognitive decline can occur in association. Brain dysmetabolism and insulin resistance might be common underlying traits. We aimed to examine the effect of high-fat diet (HFD) on cognitive decline, and of cognitive impairment on food intake and body-weight, and explore efficacy of chronic intranasal insulin (INI) therapy. We used control (C) and triple transgenic mice (3×Tg, a model of Alzheimer’s pathology) to measure cerebral mass, glucose metabolism, and the metabolic response to acute INI administration (cerebral insulin sensitivity). Y-Maze, positron emission-computed tomography, and histology were employed in 8 and 14-month-old mice, receiving normal diet (ND) or HFD. Chronic INI therapy was tested in an additional 3×Tg-HFD group. The 3×Tg groups overate, and had lower body-weight, but similar BMI, than diet-matched controls. Cognitive decline was progressive from HFD to 3×Tg-ND to 3×Tg-HFD. At 8 months, brain fasting glucose uptake (GU) was increased by C-HFD, and this effect was blunted in 3×Tg-HFD mice, also showing brain insulin resistance. Brain mass was reduced in 3×Tg mice at 14 months. Dentate gyrus dimensions paralleled cognitive findings. Chronic INI preserved cognition, dentate gyrus and metabolism, reducing food intake, and body weight in 3×Tg-HFD mice. Peripherally, leptin was suppressed and PAI-1 elevated in 3×Tg mice, correlating inversely with cerebral GU. In conclusion, 3×Tg background and HFD exert additive (genes*lifestyle) detriment to the brain, and cognitive dysfunction is accompanied by increased food intake in 3×Tg mice. PAI-1 levels and leptin deficiency were identified as potential peripheral contributors. Chronic INI improved peripheral and central outcomes

    Variables associated with in-hospital and postdischarge outcomes after postcardiotomy extracorporeal membrane oxygenation:Netherlands Heart Registration Cohort

    Get PDF
    Objectives: Extracorporeal membrane oxygenation (ECMO) for postcardiotomy cardiogenic shock has been increasingly used without concomitant mortality reduction. This study aims to investigate determinants of in-hospital and postdischarge mortality in patients requiring postcardiotomy ECMO in the Netherlands. Methods: The Netherlands Heart Registration collects nationwide prospective data from cardiac surgery units. Adults receiving intraoperative or postoperative ECMO included in the register from January 2013 to December 2019 were studied. Survival status was established through the national Personal Records Database. Multivariable logistic regression analyses were used to investigate determinants of in-hospital (3 models) and 12-month postdischarge mortality (4 models). Each model was developed to target specific time points during a patient's clinical course. Results: Overall, 406 patients (67.2% men, median age, 66.0 years [interquartile range, 55.0-72.0 years]) were included. In-hospital mortality was 51.7%, with death occurring in a median of 5 days (interquartile range, 2-14 days) after surgery. Hospital survivors (n = 196) experienced considerable rates of pulmonary infections, respiratory failure, arrhythmias, and deep sternal wound infections during a hospitalization of median 29 days (interquartile range, 17-51 days). Older age (odds ratio [OR], 1.02; 95% CI, 1.0-1.04) and preoperative higher body mass index (OR, 1.08; 95% CI, 1.02-1.14) were associated with in-hospital death. Within 12 months after discharge, 35.1% of hospital survivors (n = 63) died. Postoperative renal failure (OR, 2.3; 95% CI, 1.6-4.9), respiratory failure (OR, 3.6; 95% CI, 1.3-9.9), and re-thoracotomy (OR, 2.9; 95% CI, 1.3-6.5) were associated with 12-month postdischarge mortality. Conclusions: In-hospital and postdischarge mortality after postcardiotomy ECMO in adults remains high in the Netherlands. ECMO support in patients with higher age and body mass index, which drive associations with higher in-hospital mortality, should be carefully considered. Further observations suggest that prevention of re-thoracotomies, renal failure, and respiratory failure are targets that may improve postdischarge outcomes

    Molecular analysis of Fanconi anemia: the experience of the Bone Marrow Failure Study Group of the Italian Association of Pediatric Onco-Hematology

    Get PDF
    Fanconi anemia is an inherited disease characterized by congenital malformations, pancytopenia, cancer predisposition, and sensitivity to cross-linking agents. The molecular diagnosis of Fanconi anemia is relatively complex for several aspects including genetic heterogeneity with mutations in at least 16 different genes. In this paper, we report the mutations identified in 100 unrelated probands enrolled into the National Network of the Italian Association of Pediatric Hematoly and Oncology. In approximately half of these cases, mutational screening was carried out after retroviral complementation analyses or protein analysis. In the other half, the analysis was performed on the most frequently mutated genes or using a next generation sequencing approach. We identified 108 distinct variants of the FANCA, FANCG, FANCC, FANCD2, and FANCB genes in 85, 9, 3, 2, and 1 families, respectively. Despite the relatively high number of private mutations, 45 of which are novel Fanconi anemia alleles, 26% of the FANCA alleles are due to 5 distinct mutations. Most of the mutations are large genomic deletions and nonsense or frameshift mutations, although we identified a series of missense mutations, whose pathogenetic role was not always certain. The molecular diagnosis of Fanconi anemia is still a tiered procedure that requires identifying candidate genes to avoid useless sequencing. Introduction of next generation sequencing strategies will greatly improve the diagnostic process, allowing a rapid analysis of all the genes

    Dissecting the susceptibility/resistance mechanism of Vitis vinifera for the future control of downy mildew

    Get PDF
    23CO.NA.VI. 2020 – 8° Convegno Nazionale di Viticoltura, Udine, Italy, July 5-7, 2021openInternationalBothThe Eurasian grapevine (Vitis vinifera), a species cultivated worldwide for high-quality wine production, is extremely susceptible to the agent of downy mildew, Plasmopara viticola. Nevertheless, germplasm from Georgia (Southern Caucasus, the first grapevine domestication centre), characterized by a high genetic variability, showed resistance traits to P. viticola. The cultivar Mgaloblishvili exhibited the most promising phenotype in terms of resistance against P. viticola. Its defence response results in: i) low disease intensity; ii) low sporulation; iii) damaged mycelium; iv) production of antimicrobial compounds such as volatile organic compounds (VOCs), whose effectiveness on the pathogen was evaluated by leafdisc assays. At the transcriptomic level, its resistance mechanism is determined by the differential expression of both resistance and susceptible genes. The resistance genes are related to: i) pathogen recognition through PAMP, DAMP and effector receptors; ii) ethylene signalling pathway; iii) synthesis of antimicrobial compounds (VOCs) and fungal wall degrading enzymes; iv) development of structural barriers (cell wall reinforcement). The first putative susceptible gene was the transcription factor VviLBDIf7 gene, whose validation was carried out by dsRNA (double-stranded RNA) assay. In this work, these unique results on plant-pathogen interaction are reviewed with the aim of developing new strategies to control the disease.openRicciardi, Valentina; Marcianò, Demetrio; Sargolzaei, Maryam; Marrone Fassolo, Elena; Fracassetti, Daniela; Brilli, Matteo; Moser, Mirko; Vahid, Shariati J.; Tavakole, Elahe; Maddalena, Giuliana; Passera, Alessandro; Casati, Paola; Pindo, Massimo; Cestaro, Alessandro; Costa, Alex; Bonza, Maria Cristina; Maghradze, David; Tirelli, Antonio; Failla, Osvaldo; Bianco, Piero Attilio; Quaglino, Fabio; Toffolatti, Silvia Laura; De Lorenzis, GabriellaRicciardi, V.; Marcianò, D.; Sargolzaei, M.; Marrone Fassolo, E.; Fracassetti, D.; Brilli, M.; Moser, M.; Vahid, S.J.; Tavakole, E.; Maddalena, G.; Passera, A.; Casati, P.; Pindo, M.; Cestaro, A.; Costa, A.; Bonza, M.C.; Maghradze, D.; Tirelli, A.; Failla, O.; Bianco, P.A.; Quaglino, F.; Toffolatti, S.L.; De Lorenzis, G

    Efficacy of canakinumab in patients with Still's disease across different lines of biologic therapy: real-life data from the International AIDA Network Registry for Still's Disease

    Get PDF
    Introduction: The effectiveness of canakinumab may change according to the different times it is used after Still's disease onset. This study aimed to investigate whether canakinumab (CAN) shows differences in short- and long-term therapeutic outcomes, according to its use as different lines of biologic treatment.Methods: Patients included in this study were retrospectively enrolled from the AutoInflammatory Disease Alliance (AIDA) International Registry dedicated to Still's disease. Seventy-seven (51 females and 26 males) patients with Still's disease were included in the present study. In total, 39 (50.6%) patients underwent CAN as a first-line biologic agent, and the remaining 38 (49.4%) patients were treated with CAN as a second-line biologic agent or subsequent biologic agent.Results: No statistically significant differences were found between patients treated with CAN as a first-line biologic agent and those previously treated with other biologic agents in terms of the frequency of complete response (p =0.62), partial response (p =0.61), treatment failure (p >0.99), and frequency of patients discontinuing CAN due to lack or loss of efficacy (p =0.2). Of all the patients, 18 (23.4%) patients experienced disease relapse during canakinumab treatment, 9 patients were treated with canakinumab as a first-line biologic agent, and nine patients were treated with a second-line or subsequent biologic agent. No differences were found in the frequency of glucocorticoid use (p =0.34), daily glucocorticoid dosage (p =0.47), or concomitant methotrexate dosage (p =0.43) at the last assessment during CAN treatment.Conclusion: Canakinumab has proved to be effective in patients with Still's disease, regardless of its line of biologic treatment

    Pediatric tuberculosis in Italian children: Epidemiological and clinical data from the Italian register of pediatric tuberculosis

    Get PDF
    Tuberculosis (TB) is one of the leading causes of death worldwide. Over the last decades, TB has also emerged in the pediatric population. Epidemiologic data of childhood TB are still limited and there is an urgent need of more data on very large cohorts. A multicenter study was conducted in 27 pediatric hospitals, pediatric wards, and public health centers in Italy using a standardized form, covering the period of time between 1 January 2010 and 31 December 2012. Children with active TB, latent TB, and those recently exposed to TB or recently adopted/immigrated from a high TB incidence country were enrolled. Overall, 4234 children were included; 554 (13.1%) children had active TB, 594 (14.0%) latent TB and 3086 (72.9%) were uninfected. Among children with active TB, 481 (86.8%) patients had pulmonary TB. The treatment of active TB cases was known for 96.4% (n = 534) of the cases. Overall, 210 (39.3%) out of these 534 children were treated with three and 216 (40.4%) with four first-line drugs. Second-line drugs where used in 87 (16.3%) children with active TB. Drug-resistant strains of Mycobacterium tuberculosis were reported in 39 (7%) children. Improving the surveillance of childhood TB is important for public health care workers and pediatricians. A non-negligible proportion of children had drug-resistant TB and was treated with second-line drugs, most of which are off-label in the pediatric age. Future efforts should concentrate on improving active surveillance, diagnostic tools, and the availability of antitubercular pediatric formulations, also in low-endemic countries

    Identification of p38 MAPK and JNK as New Targets for Correction of Wilson Disease-Causing ATP7B Mutants

    Get PDF
    Wilson disease (WD) is an autosomal recessive disorder that is caused by the toxic accumulation of copper (Cu) in the liver. The ATP7B gene, which is mutated in WD, encodes a multitransmembrane domain adenosine triphosphatase that traffics from the trans-Golgi network to the canalicular area of hepatocytes, where it facilitates excretion of excess Cu into the bile. Several ATP7B mutations, including H1069Q and R778L that are two of the most frequent variants, result in protein products, which, although still functional, remain in the endoplasmic reticulum. Thus, they fail to reach Cu excretion sites, resulting in the toxic buildup of Cu in the liver of WD patients. Therefore, correcting the location of these mutants by leading them to the appropriate functional sites in the cell should restore Cu excretion and would be beneficial to help large cohorts of WD patients. However, molecular targets for correction of endoplasmic reticulum-retained ATP7B mutants remain elusive. Here, we show that expression of the most frequent ATP7B mutant, H1069Q, activates p38 and c-Jun N-terminal kinase signaling pathways, which favor the rapid degradation of the mutant. Suppression of these pathways with RNA interference or specific chemical inhibitors results in the substantial rescue of ATP7B(H1069Q) (as well as that of several other WD-causing mutants) from the endoplasmic reticulum to the trans-Golgi network compartment, in recovery of its Cu-dependent trafficking, and in reduction of intracellular Cu levels. Conclusion: Our findings indicate p38 and c-Jun N-terminal kinase as intriguing targets for correction of WD-causing mutants and, hence, as potential candidates, which could be evaluated for the development of novel therapeutic strategies to combat WD

    Post COVID-19 irritable bowel syndrome

    Get PDF
    Objectives: The long-term consequences of COVID-19 infection on the gastrointestinal tract remain unclear. Here, we aimed to evaluate the prevalence of gastrointestinal symptoms and post-COVID-19 disorders of gut-brain interaction after hospitalisation for SARS-CoV-2 infection. Design: GI-COVID-19 is a prospective, multicentre, controlled study. Patients with and without COVID-19 diagnosis were evaluated on hospital admission and after 1, 6 and 12 months post hospitalisation. Gastrointestinal symptoms, anxiety and depression were assessed using validated questionnaires. Results: The study included 2183 hospitalised patients. The primary analysis included a total of 883 patients (614 patients with COVID-19 and 269 controls) due to the exclusion of patients with pre-existing gastrointestinal symptoms and/or surgery. At enrolment, gastrointestinal symptoms were more frequent among patients with COVID-19 than in the control group (59.3% vs 39.7%, p<0.001). At the 12-month follow-up, constipation and hard stools were significantly more prevalent in controls than in patients with COVID-19 (16% vs 9.6%, p=0.019 and 17.7% vs 10.9%, p=0.011, respectively). Compared with controls, patients with COVID-19 reported higher rates of irritable bowel syndrome (IBS) according to Rome IV criteria: 0.5% versus 3.2%, p=0.045. Factors significantly associated with IBS diagnosis included history of allergies, chronic intake of proton pump inhibitors and presence of dyspnoea. At the 6-month follow-up, the rate of patients with COVID-19 fulfilling the criteria for depression was higher than among controls. Conclusion: Compared with controls, hospitalised patients with COVID-19 had fewer problems of constipation and hard stools at 12 months after acute infection. Patients with COVID-19 had significantly higher rates of IBS than controls. Trial registration number: NCT04691895
    • …
    corecore