14 research outputs found

    Production of cold barium monohalide ions

    Get PDF
    Ion traps are an incredibly versatile tool which have many applications throughout the physical sciences, including such diverse topics as mass spectrometry, precision frequency metrology, tests of fundamental physics, and quantum computing. In this thesis, experiments are presented which involve trapping and measuring properties of Th³⁺. Th³⁺ ions are of unique interest in part because they are a promising platform for studying an unusually low-lying nuclear transition in the 229Th nucleus which could eventually be used as an exceptional optical clock. Here, experiments to measure electronic lifetimes of Th³⁺ are described. A second experimental topic explores the production of sympathetically cooled molecular ions. The study of cold molecular ions has a number of applications, some of which include spectroscopy to aid the study of astrophysical objects, precision tests of quantum electrodynamics predictions, and the study of chemical reactions in the quantum regime. The experiments presented here involve the production of barium monohalide ions, BaX⁺ (X = F, Cl, Br). This type of molecular ion proves to be particularly promising for cooling to the rovibrational ground state. The method used for producing BaX⁺ ions involves reactions between cold, trapped Ba⁺ ions and neutral gas phase reactants at room temperature. The Ba⁺ ion reaction experiments presented in this thesis characterize these reactions for producing Coulomb crystals composed of laser cooled Ba⁺ ions and sympathetically cooled BaX⁺ ions.Ph.D

    Carcinoma ductal infiltrante focal, “un invitado no deseado”

    No full text
    Cáncer de mama, una enfermedad heterogénea donde la importancia de prevenir a tiempo radica en la alta probabilidad de recuperación. Se evidencia mama derecha con lesión exofítica en unión de cuadrante superior e inferior externo de 6 cm de diámetro, ulcerada, bilobulada

    Role of substance P in suppressing growth hormone release in the rat.

    No full text

    Dosimetry of a Novel <sup>111</sup>Indium-Labeled Anti-P-Cadherin Monoclonal Antibody (FF-21101) in Non-Human Primates

    No full text
    P-cadherin is associated with a wide range of tumor types, making it an attractive therapeutic target. FF-21101 is a human–mouse chimeric monoclonal antibody (mAb) directed against human P-cadherin, which has been radioconjugated with indium-111 (111In) utilizing a DOTA chelator. We investigated the biodistribution of FF-21101(111In) in cynomolgus macaques and extrapolated the results to estimate internal radiation doses of 111In- and yttrium-90 (90Y)-FF-21101 for targeted radioimmunotherapy in humans. Whole-body planar and SPECT imaging were performed at 0, 2, 24, 48, 72, 96, and 120 h post-injection, using a dual-head gamma camera. Volumes of interest of identifiable source organs of radioactivity were defined on aligned reference CT and serial SPECT images. Organs with the highest estimated dose values (mSv/MBq) for FF-21101(111In) were the lungs (0.840), spleen (0.816), liver (0.751), kidneys (0.629), and heart wall (0.451); and for FF-21101(90Y) dose values were: lungs (10.49), spleen (8.21), kidneys (5.92), liver (5.46), and heart wall (2.61). FF-21101(111In) exhibits favorable biodistribution in cynomolgus macaques and estimated human dosimetric characteristics. Data obtained in this study were used to support the filing of an investigational new drug application with the FDA for a Phase I clinical trial
    corecore