5,741 research outputs found

    Self consistent thermal wave model description of the transverse dynamics for relativistic charged particle beams in magnetoactive plasmas

    Full text link
    Thermal Wave Model is used to study the strong self-consistent Plasma Wake Field interaction (transverse effects) between a strongly magnetized plasma and a relativistic electron/positron beam travelling along the external magnetic field, in the long beam limit, in terms of a nonlocal NLS equation and the virial equation. In the linear regime, vortices predicted in terms of Laguerre-Gauss beams characterized by non-zero orbital angular momentum (vortex charge). In the nonlinear regime, criteria for collapse and stable oscillations is established and the thin plasma lens mechanism is investigated, for beam size much greater than the plasma wavelength. The beam squeezing and the self-pinching equilibrium is predicted, for beam size much smaller than the plasma wavelength, taking the aberrationless solution of the nonlocal Nonlinear Schroeding equation.Comment: Poster presentation P5.006 at the 38th EPS Conference on Plasma Physics, Strasbourg, France, 26 June - 1 July, 201

    Interrogation of fiber Bragg-grating resonators by polarization-spectroscopy laser-frequency locking.

    Get PDF
    We report on an optically-based technique that provides an efficient way to track static and dynamic strain by locking the frequency of a diode laser to a fiber Bragg-grating Fabry-Pérot cavity. For this purpose, a suitable optical frequency discriminator is generated exploiting the fiber natural birefringence and that resulting from the gratings inscription process. In our scheme, a polarization analyzer detects dispersive-shaped signals centered on the cavity resonances without need for additional optical elements in the resonator or any laser-modulation technique. This method prevents degradation of the resonator quality and maintains the configuration relatively simple, demonstrating static and dynamic mechanical sensing below the picostrain level

    The role of the Berry Phase in Dynamical Jahn-Teller Systems

    Full text link
    The presence/absence of a Berry phase depends on the topology of the manifold of dynamical Jahn-Teller potential minima. We describe in detail the relation between these topological properties and the way the lowest two adiabatic potential surfaces get locally degenerate. We illustrate our arguments through spherical generalizations of the linear T x h and H x h cases, relevant for the physics of fullerene ions. Our analysis allows us to classify all the spherical Jahn-Teller systems with respect to the Berry phase. Its absence can, but does not necessarily, lead to a nondegenerate ground state.Comment: revtex 7 pages, 2 eps figures include

    Multiscale Composites: Assessment of a Feasible Manufacturing Process

    Get PDF
    A very interesting field of research on advanced composite materials is the possibility to integrate new functionalities and specific improvements acting on the matrix of the composite by means of a nanocharged resin. In this way, the composite becomes a so-called "multiscale composite" in which the different phases change from nano to macro scale. For example, the incorporation of nanoscale conductive fillers with intrinsically high electrical conductivity could allow a tailoring of this property for the final material. The properties of carbon nanotubes (CNT) make them an effective candidate as fillers in polymer composite systems to obtain ultralight structural materials with advanced electrical and thermal characteristics. Nevertheless, several problems are related to the distribution in the matrix and to the processability of the systems filled with CNT. Existing liquid molding processes such as resin transfer molding (RTM) and vacuum-assisted resin transfer molding (VARTM) can be adapted to produce carbon fiber reinforced polymer (CFRP) impregnated with CNT nanofilled resins. Unfortunately, the loading of more than 0.3-0.5% of CNT can lead to high resin viscosities that are unacceptable for such kind of processes. In addition to the viscosity issues that are related to the high CNT content, a filtration effect of the nanofillers caused by the fibrous medium may also lead to inadequate final component quality. This work describes the development of an effective manufacturing process of a fiber-reinforced multiscale composite panel, with a tetra-functional epoxy matrix loaded with carbon nanotubes to increase its electrical properties and with GPOSS to increase its resistance to fire. A first approach has been attempted with a traditional liquid infusion process. As already anticipated, this technique has shown considerable difficulties related both to the low level of impregnation achieved, due to the high viscosity of the resin, and to the filtration effects of the dispersed nanocharges. To overcome these problems, an opportunely modified process based on a sort of film infusion has been proposed. This modification has given an acceptable result in terms of impregnation and morphological arrangement of CNTs in nanofilled CFRP. Finally, the developed infiltration technique has been tested for the manufacture of a carbon fiber-reinforced panel with a more complex shape

    Inflationary Perturbations in Palatini Generalised Gravity

    Get PDF
    We examine the generation of primordial perturbations during an inflationary epoch in generalised theories of gravity when the equations of motion are derived using the Palatini variational principle. Both f(R) and Scalar-Tensor theories are considered and we compare our results with those obtained under the conventional metric formalism. Non-linear generalisations of the action lead to different theories under the two variational choices and we obtain distinct results for scalar and tensor spectral indices and their ratio. We find the following general result; inflation driven solely by f(R) modifications alone do not result in suitable curvature perturbations whilst Scalar-Tensor theories generate nearly scalar invariant curvature perturbations but no tensor modes.Comment: 9 page

    Low-energy excitations of a linearly Jahn-Teller coupled orbital quintet

    Full text link
    The low-energy spectra of the single-mode h x (G+H) linear Jahn-Teller model is studied by means of exact diagonalization. Both eigenenergies and photoemission spectral intensities are computed. These spectra are useful to understand the vibronic dynamics of icosahedral clusters with partly filled orbital quintet molecular shells, for example C60 positive ions.Comment: 14 pages revte

    A Java Middleware for Guaranteeing Privacy of Distributed Tuple Spaces

    Get PDF
    The tuple space communication model, such as the one used in Linda, provides great flexibility for modeling concurrent, distributed and mobile processes. In a distributed setting with mobile agents, particular attention is needed for protecting sites and information. We have designed and developed a Java middleware, Klava, for implementing distributed tuple spaces and operations to support agent interaction and mobility. In this paper, we extend the Klava middleware with cryptographic primitives that enable encryption and decryption of tuple fields. We describe the actual implementation of the new primitives and provide a few examples. The proposed extension is general enough to be applied to similar Java frameworks using multiple distributed tuples spaces possibly dealing with mobility

    Radius of a Photon Beam with Orbital Angular Momentum

    Full text link
    We analyze the transverse structure of the Gouy phase shift in light beams carrying orbital angular momentum and show that the Gouy radius rGr_G characterizing the transverse structure grows as 2p+∣ℓ∣+1\sqrt{2p+|\ell|+1} with the nodal number pp and photon angular momentum number ℓ\ell. The Gouy radius is shown to be closely related to the root-mean-square radius of the beam, and the divergence of the radius away from the focal plane is determined. Finally, we analyze the rotation of the Poynting vector in the context of the Gouy radius.Comment: 11 page
    • …
    corecore