189 research outputs found

    A model of non-linear interactions between cortical top-down and horizontal connections explains the attentional gating of collinear facilitation

    Get PDF
    AbstractPast physiological and psychophysical experiments have shown that attention can modulate the effects of contextual information appearing outside the classical receptive field of a cortical neuron. Specifically, it has been suggested that attention, operating via cortical feedback connections, gates the effects of long-range horizontal connections underlying collinear facilitation in cortical area V1. This article proposes a novel mechanism, based on the computations performed within the dendrites of cortical pyramidal cells, that can account for these observations. Furthermore, it is shown that the top-down gating signal into V1 can result from a process of biased competition occurring in extrastriate cortex. A model based on these two assumptions is used to replicate the results of physiological and psychophysical experiments on collinear facilitation and attentional modulation

    Multiplicative Gain Modulation Arises Through Unsupervised Learning in a Predictive Coding Model of Cortical Function

    Get PDF
    The combination of two or more population-coded signals in a neural model of pre-dictive coding can give rise to multiplicative gain modulation in the response properties of individual neurons. Synaptic weights generating these multiplicative response properties can be learned using an unsupervised, Hebbian, learning rule. The behaviour of the model is compared to empirical data on gaze-dependent gain modulation of cortical cells, and found to be in good agreement with a range of physiological observations. Furthermore, it is demonstrated that the model can learn to represent a set of basis functions. The current paper thus connects an often-observed neurophysiological phenomenon and important neu-rocomputational principle (gain modulation) with an influential theory of brain operation (predictive coding).

    A model of partial reference frame transforms through pooling of gain-modulated responses

    Get PDF
    In multimodal integration and sensorimotor transformation areas of the posterior parietal cortex (PPC), neural responses often appear encoded in spatial reference frames that are intermediate to the in-trinsic sensory reference frames, for example, eye-centered for visual or head-centered for auditory stimulation. Many sensory responses in these areas are also modulated by direction of gaze. We demonstrate that certain types of mixed-frame responses can be generated by pooling gain-modulated responses—similar to how complex cells in the visual cortex are thought to pool the responses of simple cells. The proposed model simulates 2 types of mixed-frame responses observed in the PPC: in particular, sensory responses that shift differentially with gaze in horizontal and verti-cal dimensions and sensory responses that shift differentially for different start and end points along a single dimension of gaze. We distinguish these 2 types of mixed-frame responses from a third type in which sensory responses shift a partial yet approximately equal amount with each gaze shift. We argue that the empirical data on mixed-frame responses may be caused by multiple mechan-isms, and we adapt existing reference-frame measures to dis-tinguish between the different types. Finally, we discuss how mixed-frame responses may be revealing of the local organization of presynaptic responses

    Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean

    Get PDF
    Root colonization by specific nonpathogenic bacteria can induce a systemic resistance in plants to pathogen infections. In bean, this kind of systemic resistance can be induced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 and depends on the production of salicylic acid by this strain. In a model with plants grown in perlite we demonstrated that Pseudomonas aeruginosa 7NSK2-induced resistance is equivalent to the inclusion of 1 nM salicylic acid in the nutrient solution and used the latter treatment to analyze the molecular basis of this phenomenon. Hydroponic feeding of 1 nM salicylic acid solutions induced phenylalanine ammonia-lyase activity in roots and increased free salicylic acid levels in leaves. Because pathogen-induced systemic acquired resistance involves similar changes it was concluded that 7NSK2-induced resistance is mediated by the systemic acquired resistance pathway. This conclusion was validated by analysis of phenylalanine ammonia-lyase activity in roots and of salicylic acid levels in leaves of soil-grown plants treated with Pseudomonas aeruginosa. The induction of systemic acquired resistance by nanogram amounts of salicylic acid is discussed with respect to long-distance signaling in systemic acquired resistance

    Chorismate mutase and isochorismatase, two potential effectors of the migratory nematode Hirschmanniella oryzae, increase host susceptibility by manipulating secondary metabolite content of rice

    Get PDF
    Hirschmanniella oryzae is one of the most devastating nematodes on rice, leading to substantial yield losses. Effector proteins aid the nematode during the infection process by subduing plant defence responses. In this research we characterized two potential H. oryzae effector proteins, chorismate mutase (HoCM) and isochorismatase (HoICM), and investigated their enzymatic activity and their role in plant immunity. Both HoCM and HoICM proved to be enzymatically active in complementation tests in mutant Escherichia coli strains. Infection success by the migratory nematode H. oryzae was significantly higher in transgenic rice lines constitutively expressing HoCM or HoICM. Expression of HoCM, but not HoICM, increased rice susceptibility against the sedentary nematode Meloidogyne graminicola also. Transcriptome and metabolome analyses indicated reductions in secondary metabolites in the transgenic rice plants expressing the potential nematode effectors. The results presented here demonstrate that both HoCM and HoICM suppress the host immune system and that this may be accomplished by lowering secondary metabolite levels in the plant

    Proteomic Assessment of C57BL/6 Hippocampi after Non-Selective Pharmacological Inhibition of Nitric Oxide Synthase Activity:Implications of Seizure-like Neuronal Hyperexcitability Followed by Tauopathy

    Get PDF
    Nitric oxide (NO) is a small gaseous signaling molecule responsible for maintaining homeostasis in a myriad of tissues and molecular pathways in neurology and the cardiovasculature. In recent years, there has been increasing interest in the potential interaction between arterial stiffness (AS), an independent cardiovascular risk factor, and neurodegenerative syndromes given increasingly epidemiological study reports. For this reason, we previously investigated the mechanistic convergence between AS and neurodegeneration via the progressive non-selective inhibition of all nitric oxide synthase (NOS) isoforms with N(G)-nitro-L-arginine methyl ester (L-NAME) in C57BL/6 mice. Our previous results showed progressively increased AS in vivo and impaired visuospatial learning and memory in L-NAME-treated C57BL/6 mice. In the current study, we sought to further investigate the progressive molecular signatures in hippocampal tissue via LC–MS/MS proteomic analysis. Our data implicate mitochondrial dysfunction due to progressive L-NAME treatment. Two weeks of L-NAME treatment implicates altered G-protein-coupled-receptor signaling in the nerve synapse and associated presence of seizures and altered emotional behavior. Furthermore, molecular signatures implicate the cerebral presence of seizure-related hyperexcitability after short-term (8 weeks) treatment followed by ribosomal dysfunction and tauopathy after long-term (16 weeks) treatment

    The Future of Our Seas: Marine scientists and creative professionals collaborate for science communication

    Get PDF
    To increase awareness of the current challenges facing the marine environment, the Future of Our Seas (FOOS) project brought together the expertise of scientists, public engagement experts and creatives to train and support a group of marine scientists in effective science communication and innovative public engagement. This case study aims to inspire scientists and artists to use the FOOS approach in training, activity design and development support (hereafter called the ‘FOOS programme’) to collaboratively deliver novel and creative engagement activities. The authors reflect on the experiences of the marine scientists: (1) attending the FOOS communication and engagement training; (2) creating and delivering public engagement activities; (3) understanding our audience; and (4) collaborating with artists. The authors also share what the artists and audiences learned from participating in the FOOS public engagement activities. These different perspectives provide new insights for the field with respect to designing collaborative training which maximizes the impact of the training on participants, creative collaborators and the public. Long-term benefits of taking part in the FOOS programme, such as initiating future collaborative engagement activities and positively impacting the scientists’ research processes, are also highlighted

    Anthocyanins do not influence long-chain n-3 fatty acid status:Studies in cells, rodents and humans

    Get PDF
    Increased tissue status of the long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) is associated with cardiovascular and cognitive benefits. Limited epidemiological and animal data suggest that flavonoids, and specifically anthocyanins, may increase EPA and DHA levels, potentially by increasing their synthesis from the shorter-chain n-3 PUFA, α-linolenic acid. Using complimentary cell, rodent and human studies we investigated the impact of anthocyanins and anthocyanin-rich foods/extracts on plasma and tissue EPA and DHA levels and on the expression of fatty acid desaturase 2 (FADS2), which represents the rate limiting enzymes in EPA and DHA synthesis. In experiment 1, rats were fed a standard diet containing either palm oil or rapeseed oil supplemented with pure anthocyanins for 8 weeks. Retrospective fatty acid analysis was conducted on plasma samples collected from a human randomized controlled trial where participants consumed an elderberry extract for 12 weeks (experiment 2). HepG2 cells were cultured with α-linolenic acid with or without select anthocyanins and their in vivo metabolites for 24 h and 48 h (experiment 3). The fatty acid composition of the cell membranes, plasma and liver tissues were analyzed by gas chromatography. Anthocyanins and anthocyanin-rich food intake had no significant impact on EPA or DHA status or FADS2 gene expression in any model system. These data indicate little impact of dietary anthocyanins on n-3 PUFA distribution and suggest that the increasingly recognized benefits of anthocyanins are unlikely to be the result of a beneficial impact on tissue fatty acid status

    The growing story of (ARABIDOPSIS) CRINKLY 4

    Get PDF
    Receptor kinases play important roles in plant growth and development, but only few of them have been functionally characterized in depth. Over the past decade CRINKLY 4 (CR4)-related research has peaked as a result of a newly discovered role of ARABIDOPSIS CR4 (ACR4) in the root. Here, we comprehensively review the available (A)CR4 literature and describe its role in embryo, seed, shoot, and root development, but we also flag an unexpected role in plant defence. In addition, we discuss ACR4 domains and protein structure, describe known ACR4-interacting proteins and substrates, and elaborate on the transcriptional regulation of ACR4. Finally, we address the missing knowledge in our understanding of ACR4 signalling
    • …
    corecore