44 research outputs found

    Time-Course Transcriptome of Parageobacillus thermoglucosidasius DSM 6285 Grown in the Presence of Carbon Monoxide and Air

    Get PDF
    Parageobacillus thermoglucosidasius is a metabolically versatile, facultatively anaerobic thermophile belonging to the family Bacillaceae. Previous studies have shown that this bacterium harbours co-localised genes coding for a carbon monoxide (CO) dehydrogenase (CODH) and Ni-Fe hydrogenase (Phc) complex and oxidises CO and produces hydrogen (H2) gas via the water-gas shift (WGS) reaction. To elucidate the genetic events culminating in the WGS reaction, P. thermoglucosidasius DSM 6285 was cultivated under an initial gas atmosphere of 50% CO and 50% air and total RNA was extracted at ~8 (aerobic phase), 20 (anaerobic phase), 27 and 44 (early and late hydrogenogenic phases) hours post inoculation. The rRNA-depleted fraction was sequenced using Illumina NextSeq, v2.5, 1x75bp chemistry. Differential expression revealed that at 8 vs.. 20, 20 vs.. 27 and 27 vs.. 44 h post inoculation, 2190, 2118 and 231 transcripts were differentially (FDR < 0.05) expressed. Cluster analysis revealed 26 distinct gene expression trajectories across the four time points. Of these, two similar clusters, showing overexpression at 20 relative to 8 h and depletion at 27 and 44 h, harboured the CODH and Phc transcripts, suggesting possible regulation by O2_{2}. The transition between aerobic respiration and anaerobic growth was marked by initial metabolic deterioration, as reflected by up-regulation of transcripts linked to sporulation and down-regulation of transcripts linked to flagellar assembly and metabolism. However, the transcriptome and growth profiles revealed the reversal of this trend during the hydrogenogenic phas

    The prevalence of coeliac disease-associated human leukocyte antigens in South African transplant donors and recipients

    Get PDF
    Background. Coeliac disease (CD) is an autoimmune condition occurring in genetically predisposed individuals exposed to an environmental trigger. The human leukocyte antigen (HLA) haplotypes HLA-DQ2.5 and HLA-DQ8 have the strongest association with CD, and 90 - 95% of CD patients bear these haplotypes. The susceptibility of the South African (SA) population to CD has not been studied previously.Objectives. To describe the genetic propensity of the SA population to CD.Methods. The South African National Blood Service database was used to analyse the prevalence of HLA-DQ2.5 and HLA-DQ8 in potential donors and recipients of organ transplants. Self-reported ethnic group was used to estimate the prevalence among different population groups.Results. The overall prevalence of HLA-DQ2.5 and HLA-DQ8 was 19.8%. The prevalence was lower in black participants (15.9%) than in whites (28.6%). Coloured (22.0%) and Indian (17.4%) participants had an intermediate prevalence. There was no significant difference between potential transplant donors and recipients.Conclusions. The prevalence of HLA-DQ2.5 and HLA-DQ8 differed among SA study participants of different ethnicities. However, the notion that CD does not occur in black South Africans owing to lack of a genetic predisposition is incorrect

    Draft genome sequences of <i>Pantoea agglomerans</i> and <i>Pantoea vagans</i> isolates associated with termites

    Get PDF
    The genus Pantoea incorporates many economically and clinically important species. The plant-associated species, Pantoea agglomerans and Pantoea vagans, are closely related and are often isolated from similar environments. Plasmids conferring certain metabolic capabilities are also shared amongst these two species. The genomes of two isolates obtained from fungus-growing termites in South Africa were sequenced, assembled and annotated. A high number of orthologous genes are conserved within and between these species. The difference in genome size between P. agglomerans MP2 (4,733,829 bp) and P. vagans MP7 (4,598,703 bp) can largely be attributed to the differences in plasmid content. The genome sequences of these isolates may shed light on the common traits that enable P. agglomerans and P. vagans to co-occur in plant- and insect-associated niches.The Danish Council for Independent Research, Natural Sciences (STENO grant: Michael Poulsen), the National Research Foundation (NRF) (RCA Fellowship: Pieter De Maayer) and the NRF/Dept. of Science and Technology Centre of Excellence in Tree Health Biotechnology (CTHB), South Africa.http://www.standardsingenomics.org/index.php/sigenam2016Forestry and Agricultural Biotechnology Institute (FABI)Microbiology and Plant Patholog

    Draft genome sequences of Geobacillus sp. Strains CAMR5420 and CAMR12739

    Get PDF
    Thermophilic Geobacillus spp. can efficiently hydrolyse hemicellulose polymers and are therefore of interest in biotechnological applications. Here we report the genomes of two hemicellulotyic strains, Geobacillus sp. CAMR12739 and CAMR5420.Genomics Research Institute, University of Pretoriahttp://genomea.asm.orghb201

    IMA Genome - F16 – Draft genome assemblies of Fusarium marasasianum, Huntiella abstrusa, two Immersiporthe knoxdaviesiana isolates, Macrophomina pseudophaseolina, Macrophomina phaseolina, Naganishia randhawae, and Pseudocercospora cruenta

    Get PDF
    Draft genome assembly of Fusarium marasasianum Introduction Many plants are thought to have at least one Fusarium-associated disease with more than 80% of economically important plants affected by at least one Fusarium disease (Leslie and Summerell 2006). The socioeconomic importance of Fusarium is particularly evident when considering the Fusarium fujikuroi species complex (FFSC, sensu Geiser et al. 2021). This monophyletic group contains 65 species and numerous cryptic species (Yilmaz et al. 2021). More than 50 species in the FFSC have publicly available genomes (www.ncbi.nlm.nih.gov), indicative of their economic importance. A number of recent studies showed that the FFSC complex contains four large clades (Herron et al. 2015; Sandoval-Denis et al. 2018; Yilmaz et al. 2021). One of these corresponds to the so-called “American” clade that was initially proposed to reflect the biogeography of the species it contains (O’Donnell et al. 1998). For example, Fusarium circinatum, the pine pitch canker pathogen, is thought to be native to Mexico and Central America (Drenkhan et al. 2020), where it likely co-evolved with its Pinus hosts (Herron et al. 2015; O’Donnell et al. 1998; Wikler and Gordon 2000). The American clade also includes five additional species associated with Pinus species in Colombia. These species are F. fracticaudum, F. pininemorale, F. parvisorum, F. marasasianum, and F. sororula, of which F. parvisorum, F. marasasianum, and F. sororula displayed levels of pathogenicity that were comparable to those of F. circinatum on susceptible Pinus species (Herron et al. 2015). The risk that the various American clade species pose to forestry in Colombia and globally has provided the impetus for projects aiming to sequence their genomes. To complement the genomic resources available for F. circinatum (Fulton et al. 2020; van der Nest et al. 2014a; Van Wyk et al. 2018; Wingfield et al. 2012, 2018a), the genomes of F. pininemorale (Wingfield et al. 2017), F. fracticaudum (Wingfield et al. 2018b) and F. sororula (van der Nest et al. 2021) have been published. Here we present the whole genome sequence for the pine pathogen F. marasasianum, named after the late South African professor Walter “Wally” F.O. Marasas (Wingfield and Crous 2012) who specialised in the taxonomy of Fusarium species and their associated mycotoxins

    Metabolic Versatility and Antibacterial Metabolite Biosynthesis Are Distinguishing Genomic Features of the Fire Blight Antagonist Pantoea vagans C9-1

    Get PDF
    Smits THM, Rezzonico F, Kamber T, et al. Metabolic Versatility and Antibacterial Metabolite Biosynthesis Are Distinguishing Genomic Features of the Fire Blight Antagonist Pantoea vagans C9-1. PLoS ONE. 2011;6(7): e22247.Background: Pantoea vagans is a commercialized biological control agent used against the pome fruit bacterial disease fire blight, caused by Erwinia amylovora. Compared to other biocontrol agents, relatively little is currently known regarding Pantoea genetics. Better understanding of antagonist mechanisms of action and ecological fitness is critical to improving efficacy. Principal Findings: Genome analysis indicated two major factors contribute to biocontrol activity: competition for limiting substrates and antibacterial metabolite production. Pathways for utilization of a broad diversity of sugars and acquisition of iron were identified. Metabolism of sorbitol by P. vagans C9-1 may be a major metabolic feature in biocontrol of fire blight. Biosynthetic genes for the antibacterial peptide pantocin A were found on a chromosomal 28-kb genomic island, and for dapdiamide E on the plasmid pPag2. There was no evidence of potential virulence factors that could enable an animal or phytopathogenic lifestyle and no indication of any genetic-based biosafety risk in the antagonist. Conclusions: Identifying key determinants contributing to disease suppression allows the development of procedures to follow their expression in planta and the genome sequence contributes to rationale risk assessment regarding the use of the biocontrol strain in agricultural systems
    corecore