471 research outputs found

    Investigation on the microbiological hazards in an artisanal salami produced in Northern Italy and its production environment in different seasonal periods

    Get PDF
    In the present study, the occurrence of Listeria monocytogenes, Staphylococcus aureus, Salmonella spp. and Escherichia coli VTEC was investigated in two batches of artisanal Italian salami tested in winter and summer. Moreover, enumerations of total bacterial count, lactic acid bacteria and Enterobacteriaceae were performed as well as monitoring of water activity and pH. Samples were taken from raw materials, production process environment, semi-finished product and finished products. The results revealed an overall increase of total bacterial count and lactic acid bacteria during the ripening period, along with a decrease of Enterobacteriaceae, pH and water activity. No significant difference was observed between the two batches. The enterobacterial load appeared to decrease during the maturation period mainly due to a decrease in pH and water activity below the limits that allow the growth of these bacteria. E. coli VTEC, Salmonella spp. or L. monocytogenes were not detected in both winter and summer batches. However, Klebsiella pneumoniae was detected in both summer and winter products. Except for one isolate, no biological hazards were detected in the finished salami, proving the efficacy of the ripening period in controlling the occurrence of microbiological hazard in ripened salami. Further studies are required to assess the virulence potential of the Klebsiella pneumoniae isolates

    The resistome of commensal Escherichia coli isolated from broiler carcasses “produced without the use of antibiotics” -

    Get PDF
    Several strategies have been in place in food animal production to reduce the unnecessary use of antimicrobial agents. Beyond the monitoring of their use, the evaluation of the effect of these strategies on the occurrence and types of antimicrobial resistance (AMR) associated genes is crucial to untangle the potential emergence and spread of AMR to humans through the food chain. In the present study, the occurrence of these genes was evaluated in commensal Escherichia coli isolated from broiler carcasses “produced without the use of antibiotics” in three antibiotic-free (AB-free) farms in Italy in 2019. Sequenced data were analyzed along with publicly available genomes of E. coli collected in Italy from the broiler food chain from previous years (2017 to 2018). The genetic relationships among all 93 genomes were assessed on de novo assemblies by in silico MLST and SNP calling. Moreover, the resistomes of all genomes were investigated. According to SNP calling, genomes were gathered in three clades. Clade A encompassed, among others, ST117, ST8070 and ST1011 genomes. ST10 belonged to clade B, whereas Clade C included ST58, ST297, ST1101 and ST23 among others. Regarding the occurrence of AMR genes, a statistically significant lower occurrence of these genes in the genomes of this study in comparison to the public genomes was observed considering the whole group of genes as well as genes specifically conferring resistance to aminoglycosides, β-lactams, phenicols, trimethoprim and lincosamides. Moreover, significant reductions were observed by comparing the whole group of AMR associated mutations, as well as those specifically for fluoroquinolones and fosfomycin resistance. Although the identification of 3° generation cephalosporin resistance associated genes in AB-free E. coli is a concern, this study provides a first indication of the impact of a more prudent use of antimicrobial agents on the occurrence of AMR genes in Italian broiler production chain. More studies are needed in next years on a higher number of genomes to confirm this preliminary observation

    Occurrence of foodborne pathogens in Italian soft artisanal cheeses displaying different intra- and inter-batch variability of physicochemical and microbiological parameters

    Get PDF
    Artisanal cheeses are produced in small-scale production plants, where the lack of full automation and control of environmental and processing parameters suggests a potential risk of microbial contamination. The aim of this study was to perform a longitudinal survey in an Italian artisanal factory producing a spreadable soft cheese with no rind to evaluate the inter- and intra-batch variability of physicochemical and microbial parameters on a total of 720 environmental and cheese samples. Specifically on cheese samples, the evaluation was additionally performed on physicochemical parameters. Cheese samples were additionally collected during 15 days of storage at constant temperatures of 2 and 8 degrees C, as well as a dynamic profile of 2 degrees C for 5 days and 8 degrees C for 10 days. Furthermore, Enterobacteriaceae isolates were identified at species level to have a better knowledge of the environmental and cheese microbiota potentially harboring human pathogens. High inter-batch variability was observed for lactic acid bacteria (LAB) and total bacteria count (TBC) in cheese at the end of production but not for pH and water activity. A temperature of 8 degrees C was associated with a significantly higher load of Enterobacteriaceae in cheeses belonging to batch 6 at the end of storage, and this temperature also corresponded with the highest increase in LAB and TBC loads over cheese shelf life. Results from generalized linear mixed models (GLMMs) indicated that drains in the warm room and the packaging area were associated with higher levels of TBC and Enterobacteriaceae in cheese. Regarding foodborne pathogens, no sample was positive for verotoxigenic Escherichia coli (VTEC) or Listeria monocytogenes, whereas six Staphylococcus aureus and one Salmonella pullorum isolates were collected in cheese samples during storage and processing, respectively. Regarding Enterobacteriaceae, 166 isolates were identified at species level from all batches, with most isolates belonging to Klebsiella oxytoca and pneumoniae, Enterobacter cloacae, Hafnia alvei, and Citrobacter freundii evidencing the need to focus on standardizing the microbial quality of cow milk and on hygienic procedures for cleaning and disinfection especially in warm and maturation rooms. Further studies should be performed to investigate the potential pathogenicity and antimicrobial resistance of the identified Enterobacteriaceae species in artisanal cheeses

    Genomic features of Klebsiella isolates from artisanal ready-to-eat food production facilities

    Get PDF
    Increasing reports on K. pneumoniae strains with antimicrobial resistance and virulence traits from food and farm animals are raising concerns about the potential role of Klebsiella spp. as a foodborne pathogen. This study aimed to report and characterize Klebsiella spp. isolates from two artisanal ready-to-eat food (soft cheese and salami) producing facilities, and to track similar genotypes in different ecological niches. Over 1170 samples were collected during the whole production chain of different food batches. The overall Klebsiella prevalence was 6%. Strains were classified into the three Klebsiella species complexes: K. pneumoniae (KpSC, n = 17), K. oxytoca (KoSC, n = 38) and K. planticola (KplaSC, n = 18). Despite high genetic diversity we found in terms of known and new sequence types (STs), core genome phylogeny revealed clonal strains persisting in the same processing setting for over 14 months, isolated from the environment, raw materials and end-products. Strains showed a natural antimicrobial resistance phenotype-genotype. K. pneumoniae strains showed the highest virulence potential, with sequence types ST4242 and ST107 strains carrying yersiniabactin ybt16 and aerobactin iuc3. The latter was detected in all K. pneumoniae from salami and was located on a large conjugative plasmid highly similar (97% identity) to iuc3+ plasmids from human and pig strains circulating in nearby regions of Italy. While identical genotypes may persist along the whole food production process, different genotypes from distinct sources in the same facility shared an iuc3-plasmid. Surveillance in the food chain will be crucial to obtain a more comprehensive picture of the circulation of Klebsiella strains with pathogenic potential

    Resistome and virulome diversity of foodborne pathogens isolated from artisanal food production chain of animal origin in the Mediterranean region

    Get PDF
    The aim of the present study was to investigate the resistome and irulome diversity of 43 isolates of Listeria monocytogenes, Salmonella enterica and S. aureus collected from artisanal fermented meat and dairy products and their production environments in Portugal, Spain, Italy and Morocco. After DNA extraction, genomes were sequenced, and de novo assembled. Genetic relationships among genomes were investigated by SNP calling and in silico 7- loci MLST. Genomes of the same species belonged to different ST-types demonstrating the circulation of different clones in in the same artisanal production plant. One specific clone included genomes of S. Paratyphi B belonging to ST43 and repeatedly isolated for more than a year in an artisanal sausage production plant. No genomes but three (belonging to Salmonella enterica), were predicted as multiresistant to different antimicrobials classes. Regarding virulence, genomes of L. monocytogenes belonging to ST1, ST3 and ST489, as well as genomes of S.enterica enterica (ST43, ST33, ST314, ST3667, ST1818, ST198) and ST121 S. aureus were predicted as virulent and hypervirulent. The occurrence of virulent and hypervirulent L. monocytogenes, Salmonella enterica and S. aureus strains in artisanal fermented meat and dairy productions as well as in their finished products suggests the need for a specific focus on prevention and control measures able to reduce the risk of these biological hazards in artisanal food productions

    Apoptosis gene expression profiling in lens development

    Get PDF
    During lens development, epithelial cells located at the equatorial region of the lens undergo terminal differentiation to form fibre cells resulting in cell elongation and degradation of all intracellular organelles. Failure to complete this process successfully can result in cataract. This process is thought to be an attenuated form of classical apoptosis. This study was completed to give a comprehensive analysis of apoptosis genes in the developing mouse lens. Macroarrays containing 243 immobilised cDNAs with a known role in apoptosis were utilised to examine the gene expression at different developmental stages. The stages examined were postnatal day 7 and postnatal day 14. Over 100 apoptosis genes were shown to be expressed above background with 20 genes demonstrating significantly differential expression (2-fold or greater change in expression, p-value < 0.05), with highest expression at PI4. PCR confirmed expression of all the genes identified from the array results, and differential expression was confirmed for 52% of the genes. Protein expression of two selected genes, axl and mcl-1, was demonstrated using western blotting. Lens morphology was examined in transgenic mice generated to contain an extended CAG repeat in the huntingtin gene (one of the genes identified from the arrays). Morphology was compared between homozygote, heterozygote and wild-type mice. The presence of the mutated gene did not affect denucleation during lens differentiation and no statistically significant difference was seen in the dimensions of the organelle free zone (OFZ) of the wild-type and homozygote mice. A cross-species comparison was completed. Gene expression of the genes shown to be highly expressed and differentially expressed from the array results was examined in embryonic chick lenses. From the results of this part of the study expression was seen for 83% of genes. These results add to the argument that the process of differentiation is similar in both mouse and chick lenses.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Mental Workload in the Explanation of Automation Effects on ATC Performance

    Get PDF
    Automation has been introduced more and more into the role of air traffic control (ATC). As with many other areas of human activity, automation has the objective of reducing the complexity of the task so that performance is optimised and safer. However, automation can also have negative effects on cognitive processing and the performance of the controllers. In this paper, we present the progress made at AUTOPACE, a European project in which research is carried out to discover what these negative effects are and to propose measures to mitigate them. The fundamental proposal of the project is to analyse, predict, and mitigate these negative effects by assessing the complexity of ATC in relation to the mental workload experienced by the controller. Hence, a highly complex situation will be one with a high mental workload and a low complex situation will be one in which the mental workload is low

    Evaluation of epidermal growth factor-related growth factors and receptors and of neoangiogenesis in completely resected stage I-IIIA non-small-cell lung cancer: amphiregulin and microvessel count are independent prognostic indicators of survival.

    Get PDF
    We have determined the expression of transforming growth factor alpha (TGF alpha), amphiregulin (AR), CRIPTO, the epidermal growth factor receptor (EGFR), erbB-2, erbB-3, and tumor angiogenesis in a series of 195 patients with stage I-IIIA non-small cell lung cancer (NSCLC) treated with radical surgery to define their usefulness as prognostic indicators of survival. A variable degree of specific staining in cancer cells was observed for the three growth factors and for the three growth factor receptors in the majority of NSCLC patients. A statistically significant association between overexpression of TGF alpha, AR, and CRIPTO was observed. Enhanced expression of AR was significantly correlated with enhanced expression of erbB-2 and advanced T-stage. A direct association was also detected for overexpression of TGF alpha and of erbB-2 or erbB-3, respectively. Sex, tumor size, nodal status, stage, microvessel count, as a measure of neovascularization, and AR overexpression significantly correlated with overall survival at univariate analysis. In a Cox multivariate analysis, the only characteristics with an independent prognostic effect on OAS were microvessel count [relative hazard (RH), 6.61; P < 0.00001), nodal status (RH, 1.59; P = 0.0013), and AR overexpression (RH, 1.72; P = 0.02). These results suggest that evaluation of neoangiogenesis and of certain growth factors, such as AR, can be useful in addition to conventional pathological staging to select high-risk NSCLC patients who may benefit from post-surgical systemic therapies

    THE ITALIAN QUATERNARY VOLCANISM

    Get PDF
    The peninsular and insular Italy are punctuated by Quaternary volcanoes and their rocks constitute an important aliquot of the Italian Quaternary sedimentary successions. Also away from volcanoes themselves, volcanic ash layers are a common and frequent feature of the Quaternary records, which provide us with potential relevant stratigraphic and chronological markers at service of a wide array of the Quaternary science issues. In this paper, a broad representation of the Italian volcano-logical community has joined to provide an updated comprehensive state of art of the Italian Quaternary volcanism. The eruptive history, style and dynamics and, in some cases, the hazard assessment of about thirty Quaternary volcanoes, from the north-ernmost Mt. Amiata, in Tuscany, to the southernmost Pantelleria and Linosa, in Sicily Channel, are here reviewed in the light of the substantial improving of the methodological approaches and the overall knowledge achieved in the last decades in the vol-canological field study. We hope that the present review can represent a useful and agile document summarising the knowledege on the Italian volcanism at the service of the Quaternary community operating in central Mediterranean area
    • …
    corecore