10,274 research outputs found

    The ESO Spectroscopic facility

    Get PDF
    We present the concept of a novel facility dedicated to massively-multiplexed spectroscopy. The telescope has a very wide field Cassegrain focus optimised for fibre feeding. With a Field of View (FoV) of 2.5 degrees diameter and a 11.4m pupil, it will be the largest etendue telescope. The large focal plane can easily host up to 16.000 fibres. In addition, a gravity invariant focus for the central 10 arc-minutes is available to host a giant integral field unit (IFU). The 3 lenses corrector includes an ADC, and has good performance in the 360-1300 nm wavelength range. The top level science requirements were developed by a dedicated ESO working group, and one of the primary cases is high resolution spectroscopy of GAIA stars and, in general, how our Galaxy formed and evolves. The facility will therefore be equipped with both, high and low resolution spectrographs. We stress the importance of developing the telescope and instrument designs simultaneously. The most relevant R\&D aspect is also briefly discussed.Comment: 6 pages 4 figures , presented at IAU Symposium 334 "rediscovering our galaxy

    An overview of the EXTraS project: Exploring the X-ray Transient and Variable Sky

    Full text link
    The EXTraS project (Exploring the X-ray Transient and variable Sky) will harvest the hitherto unexplored temporal domain information buried in the serendipitous data collected by the European Photon Imaging Camera (EPIC) instrument onboard the ESA XMM-Newton X-ray observatory since its launch. This will include a search for fast transients, as well as a search and characterization of variability (both periodic and aperiodic) in hundreds of thousands of sources spanning more than nine orders of magnitude in time scale and six orders of magnitude in flux. X-ray results will be complemented by multiwavelength characterization of new discoveries. Phenomenological classification of variable sources will also be performed. All our results will be made available to the community. A didactic program in selected High Schools in Italy, Germany and the UK will also be implemented. The EXTraS project (2014-2016), funded within the EU/FP7 framework, is carried out by a collaboration including INAF (Italy), IUSS (Italy), CNR/IMATI (Italy), University of Leicester (UK), MPE (Germany) and ECAP (Germany).Comment: 6 pages, 1 figure. Proceedings of "Swift: 10 years of Discovery", to appear in Po

    Expectations For an Interferometric Sunyaev-Zel'dovich Effect Survey for Galaxy Clusters

    Get PDF
    Non-targeted surveys for galaxy clusters using the Sunyaev-Zel'dovich effect (SZE) will yield valuable information on both cosmology and evolution of the intra-cluster medium (ICM). The redshift distribution of detected clusters will constrain cosmology, while the properties of the discovered clusters will be important for studies of the ICM and galaxy formation. Estimating survey yields requires a detailed model for both cluster properties and the survey strategy. We address this by making mock observations of galaxy clusters in cosmological hydrodynamical simulations. The mock observatory consists of an interferometric array of ten 2.5 m diameter telescopes, operating at a central frequency of 30 GHz with a bandwidth of 8 GHz. We find that clusters with a mass above 2.5×1014h50−1M⊙2.5 \times 10^{14} h_{50}^{-1} M_\odot will be detected at any redshift, with the exact limit showing a very modest redshift dependence. Using a Press-Schechter prescription for evolving the number densities of clusters with redshift, we determine that such a survey should find hundreds of galaxy clusters per year, many at high redshifts and relatively low mass -- an important regime uniquely accessible to SZE surveys. Currently favored cosmological models predict roughly 25 clusters per square degree.Comment: revised to match published versio

    Simulations of the Microwave Sky and of its ``Observations''

    Full text link
    Here follows a preliminary report on the construction of fake millimeter and sub-millimeter skies, as observed by virtual instruments, e.g. the COBRA/SAMBA mission, using theoretical modeling and data extrapolations. Our goal is to create maps as realistic as possible of the relevant physical contributions which may contribute to the detected signals. This astrophysical modeling is followed by simulations of the measurement process itself by a given instrumental configuration. This will enable a precise determination of what can and cannot be achieved with a particular experimental configuration, and provide a feedback on how to improve the overall design. It is a key step on the way to define procedures for the separation of the different physical processes in the future observed maps. Note that this tool will also prove useful in preparing and analyzing current (\eg\ balloon borne) Microwave Background experiments. Keywords: Cosmology -- Microwave Background Anisotropies.Comment: 6 pages of uuencoded compressed postscript (1.2 Mb uncompressed), to appear in the proceedings of the meeting "Far Infrared and Sub-millimeter Space Missions in the Next Decade'', Paris, France, Eds. M. Sauvage, Space Science Revie

    The distance to the Vela pulsar gauged with HST parallax oservations

    Get PDF
    The distance to the Vela pulsar (PSR B0833-45) has been traditionally assumed to be 500 pc. Although affected by a significant uncertainty, this value stuck to both the pulsar and the SNR. In an effort to obtain a model free distance measurement, we have applied high resolution astrometry to the pulsar V~23.6 optical counterpart. Using a set of five HST/WFPC2 observations, we have obtained the first optical measurement of the annual parallax of the Vela pulsar. The parallax turns out to be 3.4 +/- 0.7 mas, implying a distance of 294(-50;+76) pc, i.e. a value significantly lower than previously believed. This affects the estimate of the pulsar absolute luminosity and of its emission efficiency at various wavelengths and confirms the exceptionally high value of the N_e towards the Vela pulsar. Finally, the complete parallax data base allows for a better measurement of the Vela pulsar proper motion (mu_alpha(cos(delta))=-37.2 +/- 1.2 mas/yr; mu_delta=28.2 +/- 1.3 mas/yr after correcting for the peculiar motion of the Sun) which, at the parallax distance, implies a transverse velocity of ~65 km/s. Moreover, the proper motion position angle appears specially well aligned with the axis of symmetry of the X-ray nebula as seen by Chandra. Such an alignment allows to assess the space velocity of the Vela pulsar to be ~81 km/s.Comment: LaTeX, 21 pages, 5 figures. Accepted for publication in Ap

    Long Range Magnetic Order and the Darwin Lagrangian

    Full text link
    We simulate a finite system of NN confined electrons with inclusion of the Darwin magnetic interaction in two- and three-dimensions. The lowest energy states are located using the steepest descent quenching adapted for velocity dependent potentials. Below a critical density the ground state is a static Wigner lattice. For supercritical density the ground state has a non-zero kinetic energy. The critical density decreases with NN for exponential confinement but not for harmonic confinement. The lowest energy state also depends on the confinement and dimension: an antiferromagnetic cluster forms for harmonic confinement in two dimensions.Comment: 5 figure

    Constraining Modified Gravity with Euclid

    Get PDF
    Future proposed satellite missions as Euclid can offer the opportunity to test general relativity on cosmic scales through mapping of the galaxy weak lensing signal. In this paper we forecast the ability of these experiments to constrain modified gravity scenarios as those predicted by scalar-tensor and f(R)f(R) theories. We found that Euclid will improve constraints expected from the PLANCK satellite on these modified gravity models by two orders of magnitude. We discuss parameter degeneracies and the possible biases introduced by modified gravity

    Graphical representation of covariant-contravariant modal formulae

    Get PDF
    Covariant-contravariant simulation is a combination of standard (covariant) simulation, its contravariant counterpart and bisimulation. We have previously studied its logical characterization by means of the covariant-contravariant modal logic. Moreover, we have investigated the relationships between this model and that of modal transition systems, where two kinds of transitions (the so-called may and must transitions) were combined in order to obtain a simple framework to express a notion of refinement over state-transition models. In a classic paper, Boudol and Larsen established a precise connection between the graphical approach, by means of modal transition systems, and the logical approach, based on Hennessy-Milner logic without negation, to system specification. They obtained a (graphical) representation theorem proving that a formula can be represented by a term if, and only if, it is consistent and prime. We show in this paper that the formulae from the covariant-contravariant modal logic that admit a "graphical" representation by means of processes, modulo the covariant-contravariant simulation preorder, are also the consistent and prime ones. In order to obtain the desired graphical representation result, we first restrict ourselves to the case of covariant-contravariant systems without bivariant actions. Bivariant actions can be incorporated later by means of an encoding that splits each bivariant action into its covariant and its contravariant parts.Comment: In Proceedings EXPRESS 2011, arXiv:1108.407

    Social experience does not abolish cultural diversity in eye movements.

    Get PDF
    Adults from Eastern (e.g., China) and Western (e.g., USA) cultural groups display pronounced differences in a range of visual processing tasks. For example, the eye movement strategies used for information extraction during a variety of face processing tasks (e.g., identification and facial expressions of emotion categorization) differs across cultural groups. Currently, many of the differences reported in previous studies have asserted that culture itself is responsible for shaping the way we process visual information, yet this has never been directly investigated. In the current study, we assessed the relative contribution of genetic and cultural factors by testing face processing in a population of British Born Chinese adults using face recognition and expression classification tasks. Contrary to predictions made by the cultural differences framework, the majority of British Born Chinese adults deployed "Eastern" eye movement strategies, while approximately 25% of participants displayed "Western" strategies. Furthermore, the cultural eye movement strategies used by individuals were consistent across recognition and expression tasks. These findings suggest that "culture" alone cannot straightforwardly account for diversity in eye movement patterns. Instead a more complex understanding of how the environment and individual experiences can influence the mechanisms that govern visual processing is required

    Contributions to the Power Spectrum of Cosmic Microwave Background from Fluctuations Caused by Clusters of Galaxies

    Get PDF
    We estimate the contributions to the cosmic microwave background radiation (CMBR) power spectrum from the static and kinematic Sunyaev-Zel'dovich (SZ) effects, and from the moving cluster of galaxies (MCG) effect. We conclude, in agreement with other studies, that at sufficiently small scales secondary fluctuations caused by clusters provide important contributions to the CMBR. At ℓ≳3000\ell \gtrsim 3000, these secondary fluctuations become important relative to lensed primordial fluctuations. Gravitational lensing at small angular scales has been proposed as a way to break the ``geometric degeneracy'' in determining fundamental cosmological parameters. We show that this method requires the separation of the static SZ effect, but the kinematic SZ effect and the MCG effect are less important. The power spectrum of secondary fluctuations caused by clusters of galaxies, if separated from the spectrum of lensed primordial fluctuations, might provide an independent constraint on several important cosmological parameters.Comment: LateX, 41 pages and 10 figures. Accepted for publication in the Astrophysical Journa
    • 

    corecore