Non-targeted surveys for galaxy clusters using the Sunyaev-Zel'dovich effect
(SZE) will yield valuable information on both cosmology and evolution of the
intra-cluster medium (ICM). The redshift distribution of detected clusters will
constrain cosmology, while the properties of the discovered clusters will be
important for studies of the ICM and galaxy formation. Estimating survey yields
requires a detailed model for both cluster properties and the survey strategy.
We address this by making mock observations of galaxy clusters in cosmological
hydrodynamical simulations. The mock observatory consists of an interferometric
array of ten 2.5 m diameter telescopes, operating at a central frequency of 30
GHz with a bandwidth of 8 GHz. We find that clusters with a mass above 2.5×1014h50−1M⊙ will be detected at any redshift, with the
exact limit showing a very modest redshift dependence. Using a Press-Schechter
prescription for evolving the number densities of clusters with redshift, we
determine that such a survey should find hundreds of galaxy clusters per year,
many at high redshifts and relatively low mass -- an important regime uniquely
accessible to SZE surveys. Currently favored cosmological models predict
roughly 25 clusters per square degree.Comment: revised to match published versio