1,329 research outputs found

    Do girls pay the price of civil war?:violence and infant mortality in Congo

    Get PDF
    This paper documents the impact of civil wars in the Democratic Republic of Congo on infant mortality between 1997 and 2004. It adopts an instrumental variable approach to correct for the non-random timing and location of conflict. Strong and robust evidence, including mother fixed effects regressions, shows that conflict significantly increases girl mortality. It also examines the mechanisms explaining this phenomenon, with a focus on disentangling the behavioral from the biological factors. The analysis suggests that gender imbalances in infant mortality are driven by the selection induced by a higher vulnerability of boys in utero rather than by gender discrimination

    Measurement of Young’s modulus of thin SmS films by Nanoindentation and surface acoustic wave

    Get PDF
    Nanoindentation was used to measure the elastic modulus of thin semiconducting form of Samarium Sulphide (SmS) thin films with nominal thickness of 100 nm, 200 nm and 400 nm on silicon substrate at different loads. The indentation results are fitted with modified King’s model [1] to exclude the effect of substrate, of which the Young’s moduli of films are consistent with measurement from Laser Surface Acoustic Wave system (LaWave) and calculated results from literature [2]. [1] [1] R. Saha, W. D. Nix, Acta Mater. 50 (2002) 23. [2] E. G. Soboleva et al, Appl. Mech. Mater. 770 (2015) 137; V. V. Kaminskiy et al, Sol. Sys. Res., 48 (2014) 561

    Data on protein abundance alteration induced by chronic exercise in mdx mice model of Duchenne muscular dystrophy and potential modulation by apocynin and taurine

    Get PDF
    Here we present original data related to the research paper entitled “Proteome analysis in dystrophic mdx mouse muscle reveals a drastic alteration of Key Metabolic and Contractile Proteins after chronic exercise and the potential modulation by anti-oxidant compounds” (Gamberi et al., 2018) [1]. The dystrophin-deficient mdx mouse is the most common animal model for Duchenne muscular dystrophy. The mdx mice phenotype of the disorder is milder than in human sufferers and it can be worsened by chronic treadmill exercise. Apocynin and taurine are two antioxidant compounds proved to be beneficial on some pathology related parameters (Schröder and Schoser, 2009) [2]. This article reports the detailed proteomic data on protein abundance alterations, in tibialis anterior muscle of mdx mice, induced by chronic exercise protocol. A selected group of mdx mice was also treated with apocynin and taurine during this protocol. Detailed MS data, comparison between mdx vs wild type, exercised mdx vs wild type, and complete analysis of spot variation are provided. Furthermore, in wild type mice subjected to the same exercise protocol, the abundance of key proteins, resulted modified in exercised mdx, were analyzed by western blot

    Tumour heterogeneity: the key advantages of single-cell analysis

    Get PDF
    Tumour heterogeneity refers to the fact that different tumour cells can show distinct morphological and phenotypic profiles, including cellular morphology, gene expression, metabolism, motility, proliferation and metastatic potential. This phenomenon occurs both between tumours (inter-tumour heterogeneity) and within tumours (intra-tumour heterogeneity), and it is caused by genetic and non-genetic factors. The heterogeneity of cancer cells introduces significant challenges in using molecular prognostic markers as well as for classifying patients that might benefit from specific therapies. Thus, research efforts for characterizing heterogeneity would be useful for a better understanding of the causes and progression of disease. It has been suggested that the study of heterogeneity within Circulating Tumour Cells (CTCs) could also reflect the full spectrum of mutations of the disease more accurately than a single biopsy of a primary or metastatic tumour. In previous years, many high throughput methodologies have raised for the study of heterogeneity at different levels (i.e., RNA, DNA, protein and epigenetic events). The aim of the current review is to stress clinical implications of tumour heterogeneity, as well as current available methodologies for their study, paying specific attention to those able to assess heterogeneity at the single cell level

    Protein kinase C theta (PKCθ) modulates the ClC-1 chloride channel activity and skeletal muscle phenotype: a biophysical and gene expression study in mouse models lacking the PKCθ

    Get PDF
    In skeletal muscle, the resting chloride conductance (gCl), due to the ClC-1 chloride channel, controls the sarcolemma electrical stability. Indeed, loss-of-function mutations in ClC-1 gene are responsible of myotonia congenita. The ClC-1 channel can be phosphorylated and inactivated by protein kinases C (PKC), but the relative contribution of each PKC isoforms is unknown. Here, we investigated on the role of PKCθ in the regulation of ClC-1 channel expression and activity in fast- and slow-twitch muscles of mouse models lacking PKCθ. Electrophysiological studies showed an increase of gCl in the PKCθ-null mice with respect to wild type. Muscle excitability was reduced accordingly. However, the expression of the ClC-1 channel, evaluated by qRT-PCR, was not modified in PKCθ-null muscles suggesting that PKCθ affects the ClC-1 activity. Pharmacological studies demonstrated that although PKCθ appreciably modulates gCl, other isoforms are still active and concur to this role. The modification of gCl in PKCθ-null muscles has caused adaptation of the expression of phenotype-specific genes, such as calcineurin and myocyte enhancer factor-2, supporting the role of PKCθ also in the settings of muscle phenotype. Importantly, the lack of PKCθ has prevented the aging-related reduction of gCl, suggesting that its modulation may represent a new strategy to contrast the aging process

    Increased sodium channel use-dependent inhibition by a new potent analogue of tocainide greatly enhances in vivo antimyotonic activity

    Get PDF
    Although the sodium channel blocker, mexiletine, is the first choice drug in myotonia, some myotonic patients remain unsatisfied due to contraindications, lack of tolerability, or incomplete response. More therapeutic options are thus needed for myotonic patients, which require clinical trials based on solid preclinical data. In previous structure-activity relationship studies, we identified two newly-synthesized derivatives of tocainide, To040 and To042, with greatly enhanced potency and use-dependent behavior in inhibiting sodium currents in frog skeletal muscle fibers. The current study was performed to verify their potential as antimyotonic agents. Patch-clamp experiments show that both compounds, especially To042, are greatly more potent and use-dependent blockers of human skeletal muscle hNav1.4 channels compared to tocainide and mexiletine. Reduced effects on F1586C hNav1.4 mutant suggest that the compounds bind to the local anesthetic receptor, but that the increased hindrance and lipophilia of the N-substituent may further strengthen drug-receptor interaction and use-dependence. Compared to mexiletine, To042 was 120 times more potent to block hNav1.4 channels in a myotonia-like cellular condition and 100 times more potent to improve muscle stiffness in vivo in a previously-validated rat model of myotonia. To explore toxicological profile, To042 was tested on hERG potassium currents, motor coordination using rotarod, and C2C12 cell line for cytotoxicity. All these experiments suggest a satisfactory therapeutic index for To042. This study shows that, owing to a huge use-dependent block of sodium channels, To042 is a promising candidate drug for myotonia and possibly other membrane excitability disorders, warranting further preclinical and human studies

    Operation of GaN planar nanodiodes as THz detectors and mixers

    Get PDF
    In this paper, we perform, by means of Monte Carlo simulations and experimental measurements, a geometry optimization of GaN-based nano-diodes for broadband Terahertz direct detection (in terms of responsivity) and mixing (in terms of output power). The capabilities of the so-called self-switching diode (SSD) are analyzed for different dimensions of the channel at room temperature. Signal detection up to the 690 GHz limit of the experimental set-up has been achieved at zero bias. The reduction of the channel width increases the detection responsivity, while the reduction in length reduces the responsivity but increases the cut-off frequency. In the case of heterodyne detection an intrinsic bandwidth of at least 100 GHz has been found. The intermediate frequency (IF) power increases for short SSDs, while the optimization in terms of the channel width is a trade-off between a higher non-linearity (obtained for narrow SSDs) and a large current level (obtained for wide SSDs). Moreover, the RF performance can be improved by biasing, with optimum performances reached, as expected, when the DC non-linearity is maximum

    Contractile efficiency of dystrophic mdx mouse muscle: In vivo and ex vivo assessment of adaptation to exercise of functional end points

    Get PDF
    Progressive weakness is a typical feature of Duchenne muscular dystrophy (DMD) patients and is exacerbated in the benign mdx mouse model by in vivo treadmill exercise. We hypothesized a different threshold for functional adaptation of mdx muscles in response to the duration of the exercise protocol. In vivo weakness was confirmed by grip strength after 4, 8 and 12 weeks of exercise in mdx mice. Torque measurements revealed that exercise-related weakness in mdx mice correlated with the duration of the protocol, while wild-type (wt) mice were stronger. Twitch and tetanic forces of isolated diaphragm and extensor digitorum longus (EDL) muscles, were lower in mdx compared to wt mice. In mdx, both muscle types exhibited greater weakness after a single exercise bout, but only in EDL after a long exercise protocol. As opposite to wt muscles, mdx EDL ones did not show any exercise-induced adaptations against eccentric contraction force drop. qRT-PCR analysis confirmed the maladaptation of genes involved in metabolic and structural remodeling, while damage-related genes remained significantly upregulated and angiogenesis impaired. Phosphorylated AMP kinase level increased only in exercised wt muscle. The severe histopathology and the high levels of muscular TGF-β1 and of plasma matrix metalloproteinase-9 confirmed the persistence of muscle damage in mdx mice. Then, dystrophic muscles showed a partial degree of functional adaptation to chronic exercise, although not sufficient to overcome weakness nor signs of damage. The improved understanding of the complex mechanisms underlying maladaptation of dystrophic muscle paves the way to a better managment of DMD patients

    Statin-induced myotoxicity is exacerbated by aging: A biophysical and molecular biology study in rats treated with atorvastatin

    Get PDF
    Statin-induced skeletal muscle damage in rats is associated to the reduction of the resting sarcolemmal chloride conductance (gCl) and ClC-1 chloride channel expression. These drugs also affect the ClC-1 regulation by increasing protein kinase C (PKC) activity, which phosphorylate and close the channel. Also the intracellular resting calcium (restCa) level is increased. Similar alterations are observed in skeletal muscles of aged rats, suggesting a higher risk of statin myotoxicity. To verify this hypothesis, we performed a 4–5-weeks atorvastatin treatment of 24-months-old rats to evaluate the ClC-1 channel function by the two-intracellular microelectrodes technique as well as transcript and protein expression of different genes sensitive to statins by quantitative real-time-PCR and western blot analysis. The restCa was measured using FURA-2 imaging, and histological analysis of muscle sections was performed. The results show a marked reduction of resting gCl, in agreement with the reduced ClC-1 mRNA and protein expression in atorvastatin-treated aged rats, with respect to treated adult animals. The observed changes in myocyte-enhancer factor-2 (MEF2) expression may be involved in ClC-1 expression changes. The activity of PKC was also increased and further modulate the gCl in treated aged rats. In parallel, a marked reduction of the expression of glycolytic and mitochondrial enzymes demonstrates an impairment of muscle metabolism. No worsening of restCa or histological features was found in statin-treated aged animals. These findings suggest that a strong reduction of gCl and alteration of muscle metabolism coupled to muscle atrophy may contribute to the increased risk of statin-induced myopathy in the elderly
    • …
    corecore