14,756 research outputs found

    Relativistic Nucleus-Nucleus Collisions: Zone of Reactions and Space-Time Structure of a Fireball

    Full text link
    A zone of reactions is determined and then exploited as a tool in studying the space-time structure of an interacting system formed in a collision of relativistic nuclei. The time dependence of the reaction rates integrated over spatial coordinates is also considered. Evaluations are made with the help of the microscopic transport model UrQMD. The relation of the boundaries of different zones of reactions and the hypersurfaces of sharp chemical and kinetic freeze-outs is discussed.Comment: 6 pages, 5 figure

    A Physical Realization of the Generalized PT-, C-, and CPT-Symmetries and the Position Operator for Klein-Gordon Fields

    Full text link
    Generalized parity (P), time-reversal (T), and charge-conjugation (C)operators were initially definedin the study of the pseudo-Hermitian Hamiltonians. We construct a concrete realization of these operators for Klein-Gordon fields and show that in this realization PT and C operators respectively correspond to the ordinary time-reversal and charge-grading operations. Furthermore, we present a complete description of the quantum mechanics of Klein-Gordon fields that is based on the construction of a Hilbert space with a relativistically invariant, positive-definite, and conserved inner product. In particular we offer a natural construction of a position operator and the corresponding localized and coherent states. The restriction of this position operator to the positive-frequency fields coincides with the Newton-Wigner operator. Our approach does not rely on the conventional restriction to positive-frequency fields. Yet it provides a consistent quantum mechanical description of Klein-Gordon fields with a genuine probabilistic interpretation.Comment: 20 pages, published versio

    Non-equilibrium fluctuations in a driven stochastic Lorentz gas

    Full text link
    We study the stationary state of a one-dimensional kinetic model where a probe particle is driven by an external field E and collides, elastically or inelastically, with a bath of particles at temperature T. We focus on the stationary distribution of the velocity of the particle, and of two estimates of the total entropy production \Delta s_tot. One is the entropy production of the medium \Delta s_m, which is equal to the energy exchanged with the scatterers, divided by a parameter \theta, coinciding with the particle temperature at E=0. The other is the work W done by the external field, again rescaled by \theta. At small E, a good collapse of the two distributions is found: in this case the two quantities also verify the Fluctuation Relation (FR), indicating that both are good approximations of \Delta s_tot. Differently, for large values of E, the fluctuations of W violate the FR, while \Delta s_m still verifies it.Comment: 6 pages, 4 figure

    Momentum of an electromagnetic wave in dielectric media

    Get PDF
    Almost a hundred years ago, two different expressions were proposed for the energy--momentum tensor of an electromagnetic wave in a dielectric. Minkowski's tensor predicted an increase in the linear momentum of the wave on entering a dielectric medium, whereas Abraham's tensor predicted its decrease. Theoretical arguments were advanced in favour of both sides, and experiments proved incapable of distinguishing between the two. Yet more forms were proposed, each with their advocates who considered the form that they were proposing to be the one true tensor. This paper reviews the debate and its eventual conclusion: that no electromagnetic wave energy--momentum tensor is complete on its own. When the appropriate accompanying energy--momentum tensor for the material medium is also considered, experimental predictions of all the various proposed tensors will always be the same, and the preferred form is therefore effectively a matter of personal choice.Comment: 23 pages, 3 figures, RevTeX 4. Removed erroneous factor of mu/mu_0 from Eq.(44

    Kinetic cross coupling between non-conserved and conserved fields in phase field models

    Get PDF
    We present a phase field model for isothermal transformations of two component alloys that includes Onsager kinetic cross coupling between the non-conserved phase field and the conserved concentration field. We also provide the reduction of the phase field model to the corresponding macroscopic description of the free boundary problem. The reduction is given in a general form. Additionally we use an explicit example of a phase field model and check that the reduced macroscopic description, in the range of its applicability, is in excellent agreement with direct phase field simulations. The relevance of the newly introduced terms to solute trapping is also discussed

    Energy and entropy of relativistic diffusing particles

    Full text link
    We discuss energy-momentum tensor and the second law of thermodynamics for a system of relativistic diffusing particles. We calculate the energy and entropy flow in this system. We obtain an exact time dependence of energy, entropy and free energy of a beam of photons in a reservoir of a fixed temperature.Comment: 14 pages,some formulas correcte

    Dissipative hydrodynamics in 2+1 dimension

    Full text link
    In 2+1 dimension, we have simulated the hydrodynamic evolution of QGP fluid with dissipation due to shear viscosity. Comparison of evolution of ideal and viscous fluid, both initialised under the same conditions e.g. same equilibration time, energy density and velocity profile, reveal that the dissipative fluid evolves slowly, cooling at a slower rate. Cooling get still slower for higher viscosity. The fluid velocities on the otherhand evolve faster in a dissipative fluid than in an ideal fluid. The transverse expansion is also enhanced in dissipative evolution. For the same decoupling temperature, freeze-out surface for a dissipative fluid is more extended than an ideal fluid. Dissipation produces entropy as a result of which particle production is increased. Particle production is increased due to (i) extension of the freeze-out surface and (ii) change of the equilibrium distribution function to a non-equilibrium one, the last effect being prominent at large transverse momentum. Compared to ideal fluid, transverse momentum distribution of pion production is considerably enhanced. Enhancement is more at high pTp_T than at low pTp_T. Pion production also increases with viscosity, larger the viscosity, more is the pion production. Dissipation also modifies the elliptic flow. Elliptic flow is reduced in viscous dynamics. Also, contrary to ideal dynamics where elliptic flow continues to increase with transverse momentum, in viscous dynamics, elliptic flow tends to saturate at large transverse momentum. The analysis suggest that initial conditions of the hot, dense matter produced in Au+Au collisions at RHIC, as extracted from ideal fluid analysis can be changed significantly if the QGP fluid is viscous.Comment: 11 pages, 10 figures (revised). In the revised version, calculations are redone with ADS/CFT and perurbative estimate of viscosity. Comments on the unphysical effects like early reheating of the fluid, in 1st order dissipative theories are added. The particle spectra calculations are redone with modified programm

    Scattering Theory of Charge-Current Induced Magnetization Dynamics

    Full text link
    In ferromagnets, charge currents can excite magnons via the spin-orbit coupling. We develop a novel and general scattering theory of charge current induced macrospin magnetization torques in normal metal∣|ferromagnet∣|normal metal layers. We apply the formalism to a dirty GaAs∣|(Ga,Mn)As∣|GaAs system. By computing the charge current induced magnetization torques and solving the Landau-Lifshitz-Gilbert equation, we find magnetization switching for current densities as low as 5×106 5\times 10^{6}~A/cm2^2. Our results are in agreement with a recent experimental observation of charge-current induced magnetization switching in (Ga,Mn)As.Comment: Final version accepted by EP

    Collision Thermalization of Nucleons in Relativistic Heavy-Ion Collisions

    Full text link
    We consider a possible mechanism of thermalization of nucleons in relativistic heavy-ion collisions. Our model belongs, to a certain degree, to the transport ones; we investigate the evolution of the system created in nucleus-nucleus collision, but we parametrize this development by the number of collisions of every particle during evolution rather than by the time variable. We based on the assumption that the nucleon momentum transfer after several nucleon-nucleon (-hadron) elastic and inelastic collisions becomes a random quantity driven by a proper distribution. This randomization results in a smearing of the nucleon momenta about their initial values and, as a consequence, in their partial isotropization and thermalization. The trial evaluation is made in the framework of a toy model. We show that the proposed scheme can be used for extraction of the physical information from experimental data on nucleon rapidity distribution.Comment: 13 pages, 8 figure

    Depletion-Isolation Effect in Vertical MOSFETs During the Transition From Partial to Fully Depleted Operation

    No full text
    A simulation study is made of floating-body effects (FBEs) in vertical MOSFETs due to depletion isolation as the pillar thickness is reduced from 200 to 10 nm. For pillar thicknesses between 200–60 nm, the output characteristics with and without impact ionization are identical at a low drain bias and then diverge at a high drain bias. The critical drain bias Vdc for which the increased drain–current is observed is found to decrease with a reduction in pillar thickness. This is explained by the onset of FBEs at progressively lower values of the drain bias due to the merging of the drain depletion regions at the bottom of the pillar (depletion isolation). For pillar thicknesses between 60–10 nm, the output characteristics show the opposite behavior, namely, the critical drain bias increases with a reduction in pillar thickness. This is explained by a reduction in the severity of the FBEs due to the drain debiasing effect caused by the elevated body potential. Both depletion isolation and gate–gate coupling contribute to the drain–current for pillar thicknesses between 100–40 nm
    • 

    corecore