1,018 research outputs found
The impact of long-term elevated CO2 on C and N retention in stable SOM pools
Elevated atmospheric CO2 frequently increases plant production and concomitant soil C inputs, which may cause additional soil C sequestration. However, whether the increase in plant production and additional soil C sequestration under elevated CO2 can be sustained in the long-term is unclear. One approach to study C-N interactions under elevated CO2 is provided by a theoretical framework that centers on the concept of progressive nitrogen limitation (PNL). The PNL concept hinges on the idea that N becomes less available with time under elevated CO2. One possible mechanism underlying this reduction in N availability is that N is retained in long-lived soil organic matter (SOM), thereby limiting plant production and the potential for soil C sequestration. The long-term nature of the PNL concept necessitates the testing of mechanisms in field experiments exposed to elevated CO2 over long periods of time. The impact of elevated CO2 and N-15 fertilization on L. perenne and T. repens monocultures has been studied in the Swiss FACE experiment for ten consecutive years. We applied a biological fractionation technique using long-term incubations with repetitive leaching to determine how elevated CO2 affects the accumulation of N and C into more stable SOM pools. Elevated CO2 significantly stimulated retention of fertilizer-N in the stable pools of the soils covered with L. perenne receiving low and high N fertilization rates by 18 and 22%, respectively, and by 45% in the soils covered by T. repens receiving the low N fertilization rate. However, elevated CO2 did not significantly increase stable soil C formation. The increase in N retention under elevated CO2 provides direct evidence that elevated CO2 increases stable N formation as proposed by the PNL concept. In the Swiss FACE experiment, however, plant production increased under elevated CO2, indicating that the additional N supply through fertilization prohibited PNL for plant production at this site. Therefore, it remains unresolved why elevated CO2 did not increase labile and stable C accumulation in these systems
Structure of trans-bis[4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole-N1,N'[diaqua- manganese(II) dibromide
[Mn(C12H10N6)2(H2O)2]Br2, Mr = 727.28, orthorhombic, Pbca, a = 10.734 (6), b = 17.084 (0), c = 15.182 (6) angstrom, V = 2784 angstrom 3, Z = 4, D(x) = 1.734 g cm-3, lambda-(Mo K-alpha) = 0.71073 angstrom, mu = 33.23 cm-1, F(000) = 1450, T = 295 K, final R = 0.032 for 1493 reflections [I > 2-sigma(I)]. The title compound is the first reported mononuclear compound with the ligand 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole. The manganese ions, situated on an inversion centre, are coordinated by four nitrogen atoms with an N-Mn-N angle of 74.1 (1)-degrees and Mn-N distances of 2.188 (4) and 2.266 (4) angstrom. Two axial water molecules [Mn-O = 2.200 (4) angstrom] complete the coordination sphere of the metal, which is pseudo-octahedral. The two bromide ions are not coordinated but are involved in an extended hydrogen-bridging network with the water ligands and the amino group of the triazole
Automatic Max-Likelihood Envelope Detection Algorithm for Quantitative High-Frame-Rate Ultrasound for Neonatal Brain Monitoring
Objective: Post-operative brain injury in neonates may result from disturbed cerebral perfusion, but accurate peri-operative monitoring is lacking. High-frame-rate (HFR) cerebral ultrasound could visualize and quantify flow in all detectable vessels using spectral Doppler; however, automated quantification in small vessels is challenging because of low signal amplitude. We have developed an automatic envelope detection algorithm for HFR pulsed wave spectral Doppler signals, enabling neonatal brain quantitative parameter maps during and after surgery. Methods: HFR ultrasound data from high-risk neonatal surgeries were recorded with a custom HFR mode (frame rate = 1000 Hz) on a Zonare ZS3 system. A pulsed wave Doppler spectrogram was calculated for each pixel containing blood flow in the image, and spectral peak velocity was tracked using a max-likelihood estimation algorithm of signal and noise regions in the spectrogram, where the most likely cross-over point marks the blood flow velocity. The resulting peak systolic velocity (PSV), end-diastolic velocity (EDV) and resistivity index (RI) were compared with other detection schemes, manual tracking and RIs from regular pulsed wave Doppler measurements in 10 neonates. Results: Envelope detection was successful in both high- and low-quality arterial and venous flow spectrograms. Our technique had the lowest root mean square error for EDV, PSV and RI (0.46 cm/s, 0.53 cm/s and 0.15, respectively) when compared with manual tracking. There was good agreement between the clinical pulsed wave Doppler RI and HFR measurement with a mean difference of 0.07. Conclusion: The max-likelihood algorithm is a promising approach to accurate, automated cerebral blood flow monitoring with HFR imaging in neonates.</p
A systematic review of the energy and climate impacts of teleworking
Information and communication technologies (ICTs) increasingly enable employees to work from home and other locations (‘teleworking’). This study explores the extent to which teleworking reduces the need to travel to work and the consequent impacts on economy-wide energy consumption.
Methods/Design: The paper provides a systematic review of the current state of knowledge of the energy impacts of teleworking. This includes the energy savings from reduced commuter travel and the indirect impacts on energy consumption associated with changes in non-work travel and home energy consumption. The aim is to identify the conditions under which teleworking leads to a net reduction in economy-wide energy consumption, and the circumstances where benefits may be outweighed by unintended impacts. The paper synthesises the results of 39 empirical studies, identified through a comprehensive search of 9,000 published articles.
Review results/Synthesis: Twenty six of the 39 studies suggest that teleworking reduces energy use, and only eight studies suggest that teleworking increases, or has a neutral impact on energy use. However, differences in the methodology, scope and assumptions of the different studies make it difficult to estimate ‘average’ energy savings. The main source of savings is the reduced distance travelled for commuting, potentially with an additional contribution from lower office energy consumption. However, the more rigorous studies that include a wider range of impacts (e.g. non-work travel or home energy use) generally find smaller savings.
Discussion: Despite the generally positive verdict on teleworking as an energy-saving practice, there are numerous uncertainties and ambiguities about its actual or potential benefits. These relate to the extent to which teleworking may lead to unpredictable increases in non-work travel and home energy use that may outweigh the gains from reduced work travel. The available evidence suggests that economy-wide energy savings are typically modest, and in many circumstances could be negative or non-existent
Needle-free pharmacological sedation techniques in paediatric patients for imaging procedures:a systematic review and meta-analysis
Background: Sedation techniques and drugs are increasingly used in children undergoing imaging procedures. In this systematic review and meta-analysis, we present an overview of literature concerning sedation of children aged 0–8 yr for magnetic resonance imaging (MRI) procedures using needle-free pharmacological techniques. Methods: Embase, MEDLINE, Web of Science, and Cochrane databases were systematically searched for studies on the use of needle-free pharmacological sedation techniques for MRI procedures in children aged 0–8 yr. Studies using i.v. or i.m. medication or advanced airway devices were excluded. We performed a meta-analysis on sedation success rate. Secondary outcomes were onset time, duration, recovery, and adverse events. Results: Sixty-seven studies were included, with 22 380 participants. The pooled success rate for oral chloral hydrate was 94% (95% confidence interval [CI]: 0.91–0.96); for oral chloral hydrate and intranasal dexmedetomidine 95% (95% CI: 0.92–0.97); for rectal, oral, or intranasal midazolam 36% (95% CI: 0.14–0.65); for oral pentobarbital 99% (95% CI: 0.90–1.00); for rectal thiopental 92% (95% CI: 0.85–0.96); for oral melatonin 75% (95% CI: 0.54–0.89); for intranasal dexmedetomidine 62% (95% CI: 0.38–0.82); for intranasal dexmedetomidine and midazolam 94% (95% CI: 0.78–0.99); and for inhaled sevoflurane 98% (95% CI: 0.97–0.99). Conclusions: We found a large variation in medication, dosage, and route of administration for needle-free sedation. Success rates for sedation techniques varied between 36% and 98%.</p
A comparison of ultrafast and conventional spectral Doppler ultrasound to measure cerebral blood flow velocity during inguinal hernia repair in infants
Background: Ultrafast cerebral Doppler ultrasound enables simultaneous quantification and visualization of cerebral blood flow velocity. The aim of this study is to compare the use of conventional and ultrafast spectral Doppler during anesthesia and their potential to show the effect of anesthesiologic procedures on cerebral blood flow velocities, in relation to blood pressure and cerebral oxygenation in infants undergoing inguinal hernia repair. Methods: A single-center prospective observational cohort study in infants up to six months of age. We evaluated conventional and ultrafast spectral Doppler cerebral ultrasound measurements in terms of number of successful measurements during the induction of anesthesia, after sevoflurane induction, administration of caudal analgesia, a fluid bolus and emergence of anesthesia. Cerebral blood flow velocity was quantified in pial arteries using conventional spectral Doppler and in the cerebral cortex using ultrafast Doppler by peak systolic velocity, end diastolic velocity and resistivity index.Results: Twenty infants were included with useable conventional spectral Doppler images in 72/100 measurements and ultrafast Doppler images in 51/100 measurements. Intraoperatively, the success rates were 53/60 (88.3%) and 41/60 (68.3%), respectively. Cerebral blood flow velocity increased after emergence for both conventional (end diastolic velocity, from 2.01 to 2.75 cm/s, p < 0.001) and ultrafast spectral Doppler (end diastolic velocity, from 0.59 to 0.94 cm/s), whereas cerebral oxygenation showed a reverse pattern with a decrease after the emergence of the infant (85% to 68%, p < 0.001). Conclusion: It is possible to quantify cortical blood flow velocity during general anesthesia using conventional and ultrafast spectral Doppler cerebral ultrasound. Cerebral blood flow velocity and blood pressure decreased, while regional cerebral oxygenation increased during general anesthesia. Ultrafast spectral Doppler ultrasound offers novel insights into perfusion within the cerebral cortex, unattainable through conventional spectral ultrasound. Yet, ultrafast Doppler is curtailed by a lower success rate and a more rigorous learning curve compared to conventional method.</p
A comparison of ultrafast and conventional spectral Doppler ultrasound to measure cerebral blood flow velocity during inguinal hernia repair in infants
Background: Ultrafast cerebral Doppler ultrasound enables simultaneous quantification and visualization of cerebral blood flow velocity. The aim of this study is to compare the use of conventional and ultrafast spectral Doppler during anesthesia and their potential to show the effect of anesthesiologic procedures on cerebral blood flow velocities, in relation to blood pressure and cerebral oxygenation in infants undergoing inguinal hernia repair. Methods: A single-center prospective observational cohort study in infants up to six months of age. We evaluated conventional and ultrafast spectral Doppler cerebral ultrasound measurements in terms of number of successful measurements during the induction of anesthesia, after sevoflurane induction, administration of caudal analgesia, a fluid bolus and emergence of anesthesia. Cerebral blood flow velocity was quantified in pial arteries using conventional spectral Doppler and in the cerebral cortex using ultrafast Doppler by peak systolic velocity, end diastolic velocity and resistivity index.Results: Twenty infants were included with useable conventional spectral Doppler images in 72/100 measurements and ultrafast Doppler images in 51/100 measurements. Intraoperatively, the success rates were 53/60 (88.3%) and 41/60 (68.3%), respectively. Cerebral blood flow velocity increased after emergence for both conventional (end diastolic velocity, from 2.01 to 2.75 cm/s, p < 0.001) and ultrafast spectral Doppler (end diastolic velocity, from 0.59 to 0.94 cm/s), whereas cerebral oxygenation showed a reverse pattern with a decrease after the emergence of the infant (85% to 68%, p < 0.001). Conclusion: It is possible to quantify cortical blood flow velocity during general anesthesia using conventional and ultrafast spectral Doppler cerebral ultrasound. Cerebral blood flow velocity and blood pressure decreased, while regional cerebral oxygenation increased during general anesthesia. Ultrafast spectral Doppler ultrasound offers novel insights into perfusion within the cerebral cortex, unattainable through conventional spectral ultrasound. Yet, ultrafast Doppler is curtailed by a lower success rate and a more rigorous learning curve compared to conventional method.</p
Гарантоздатність як фундаментальний узагальнюючий та інтегруючий підхід
Представлені головні принципи та умови становлення і етапи розвитку фундаментальної теорії і практики узагальнюючих та інтегруючих концепцій гарантоздатності, починаючи з першої об’єднаної конференції двох наукових шкіл Дж. фон Неймана і Н. Вінера. Приведені основні положення розвитку теоретичних засад і результатів прикладних досліджень інтеграційних процесів безвідмовності (надійності), відмовостійкості та гарантоздатності інформаційно-управляючих комп’ютерних систем (ІУКС).Представлены главные принципы, условия становления и этапы развития фундаментальной теории и практики обобщающих и интегрирующих концепций гарантоспособности, начиная с первой объединённой конференции двух научных школ Дж. фон Неймана и Н. Винера. Приведены основные положения развития теоретических основ и результатов прикладных исследований интеграционных процессов безотказности (надёжности), отказоустойчивости и гарантоспособности информационно-управляющих компьютерных систем (ИУКС).The main principles and conditions of formation and stages of development of the fundamental theory and practice of the generalizing and integrating concepts of dependability were presented after the leadthrough the first joint conference of two scientific schools of J. von Neumann and N. Wiener. The basic aspects of development of theoretical principles and results of applied researches of integration processes of reliability (fail-safety)
Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without acute lung injury: a preventive randomized controlled trial
Introduction: Recent cohort studies have identified the use of large tidal volumes as a major risk factor for development of lung injury in mechanically ventilated patients without acute lung injury (ALI). We compared the effect of conventional with lower tidal volumes on pulmonary inflammation and development of lung injury in critically ill patients without ALI at the onset of mechanical ventilation. Methods: We performed a randomized controlled nonblinded preventive trial comparing mechanical ventilation with tidal volumes of 10 ml versus 6 ml per kilogram of predicted body weight in critically ill patients without ALI at the onset of mechanical ventilation. The primary end point was cytokine levels in bronchoalveolar lavage fluid and plasma during mechanical ventilation. The secondary end point was the development of lung injury, as determined by consensus criteria for ALI, duration of mechanical ventilation, and mortality. Results: One hundred fifty patients (74 conventional versus 76 lower tidal volume) were enrolled and analyzed. No differences were observed in lavage fluid cytokine levels at baseline between the randomization groups. Plasma interleukin-6 (IL-6) levels decreased significantly more strongly in the lower-tidal-volume group ((from 51 (20 to 182) ng/ml to 11 (5 to 20) ng/ml versus 50 (21 to 122) ng/ml to 21 (20 to 77) ng/ml; P = 0.01)). The trial was stopped prematurely for safety reasons because the development of lung injury was higher in the conventional tidal-volume group as compared with the lower tidal-volume group (13.5% versus 2.6%; P = 0.01). Univariate analysis showed statistical relations between baseline lung-injury score, randomization group, level of positive end-expiratory pressure (PEEP), the number of transfused blood products, the presence of a risk factor for ALI, and baseline IL-6 lavage fluid levels and the development of lung injury. Multivariate analysis revealed the randomization group and the level of PEEP as independent predictors of the development of lung injury. Conclusions: Mechanical ventilation with conventional tidal volumes is associated with sustained cytokine production, as measured in plasma. Our data suggest that mechanical ventilation with conventional tidal volumes contributes to the development of lung injury in patients without ALI at the onset of mechanical ventilation. (aut. ref.
- …