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Objective: Post-operative brain injury in neonates may result from disturbed cerebral perfusion, but accurate peri-
operative monitoring is lacking. High-frame-rate (HFR) cerebral ultrasound could visualize and quantify flow in
all detectable vessels using spectral Doppler; however, automated quantification in small vessels is challenging
because of low signal amplitude. We have developed an automatic envelope detection algorithm for HFR pulsed
wave spectral Doppler signals, enabling neonatal brain quantitative parameter maps during and after surgery.
Methods: HFR ultrasound data from high-risk neonatal surgeries were recorded with a custom HFR mode (frame
rate = 1000 Hz) on a Zonare ZS3 system. A pulsed wave Doppler spectrogram was calculated for each pixel con-
taining blood flow in the image, and spectral peak velocity was tracked using a max-likelihood estimation algo-
rithm of signal and noise regions in the spectrogram, where the most likely cross-over point marks the blood flow
velocity. The resulting peak systolic velocity (PSV), end-diastolic velocity (EDV) and resistivity index (RI) were
compared with other detection schemes, manual tracking and RIs from regular pulsed wave Doppler measure-
ments in 10 neonates.
Results: Envelope detection was successful in both high- and low-quality arterial and venous flow spectrograms.
Our technique had the lowest root mean square error for EDV, PSV and RI (0.46 cm/s, 0.53 cm/s and 0.15, respec-
tively) when compared with manual tracking. There was good agreement between the clinical pulsed wave Dopp-
ler RI and HFR measurement with a mean difference of 0.07.
Conclusion: The max-likelihood algorithm is a promising approach to accurate, automated cerebral blood flow
monitoring with HFR imaging in neonates.
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Introduction

Surgery in neonates poses a risk factor for brain injury, which may
impair neurodevelopment later in life [1−3]. These brain injuries might
be triggered by a disturbance of cerebral blood flow (CBF) in combina-
tion with impaired autoregulation [4,5]. Currently, anesthesiologists
attempting to optimize CBF during surgery rely on standard monitoring
techniques to track heart rate, blood pressure, capillary refill, blood lac-
tate and pH and urine production. However, these markers of CBF lack
sensitivity to detect and monitor altered cerebral perfusion [6].

Cerebral ultrasound in neonates using color Doppler or directional
power Doppler (DPD) enables sensitive vessel visualization, while
pulsed wave spectral Doppler (PWD) quantifies cerebral blood flow
velocity (CFBV) in single arteries/veins. PWD uses the Doppler equation
to convert the local spectrum of Doppler frequencies into flow velocities
as a function of time, the so-called spectrogram [7]. Although Doppler
flow patterns in major cerebral arteries (most commonly the anterior
cerebral artery) are often used in neonatal intensive care units to detect
brain injury, low frame rates in traditional ultrasound machines limit
simultaneous visualization and quantification [8,9]. High-frame-rate
(HFR) ultrasound, with more than 1000 frames/s, offers high-resolution
imaging and spectral velocity for all pixels, potentially enabling moni-
toring of cerebral perfusion [10]. Recently, several ultrasound system
vendors have implemented clinical or custom HFR options in their devi-
ces, such as Supersonic Imagine’s Aixplorer [11], GE’s Vivid E-9 [12]
and Mindray’s Zonare ZS3 [13].

Demene et al. [10] were the first to investigate neonatal brain HFR
ultrasound quantitatively, creating 2-D resistivity index (RI) maps by
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calculating the mean Doppler frequency over time instead of detecting
the envelope. However, this mean velocity technique may be sensitive
to wall filters, as reported in tissue Doppler imaging [14]. Moreover,
spectral noise might give a bias in the estimation. Another study employ-
ing HFR ultrasound to investigate the neonatal brain investigated global
cerebral blood volume across multiple brain regions during cardiac sur-
gery [15]. However, in that study individual velocities within arteries
and veins were not considered. In a different study, which used the sin-
gle-element NeoDoppler probe, cerebral blood flow velocity was moni-
tored during neonatal non-cardiac surgery, yet this was constrained to
only a single, central cylindrical area of the brain [16].

A robust spectral Doppler envelope estimation algorithm is cru-
cial for deriving quantitative information on local velocity and 2-D
parameter maps. Various envelope estimation techniques for clinical
PWD analysis have been developed, but many are susceptible to
poor signal-to-noise ratio (SNR) [17−22]. These approaches rely on
threshold crossing, where the maximum frequency is located as a
specific percentage of the integrated power spectrum. In these meth-
ods, the integrated spectrum is strongly influenced by noise at the
far end of the spectrum [17−22]. Kathpalia et al.’s [21] optimized
signal noise slope intersection method (oSNSI) provided a more
robust maximum velocity estimation but is likely not suitable in
low-flow conditions or with HFR ultrasound, where the velocity
spectrogram characteristics are less favorable.

To obtain envelope velocity-derived quantitative results, we
developed a new, robust automatic spectral envelope estimation
Figure 1. Flowchart of IQ-data analysis with automatic max-likelihood envelope estim
ture; PSV, peak systolic velocity; RI, resistivity index.
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algorithm. This algorithm provides parameters in every blood flow
pixel in the imaging plane such as peak systolic velocity (PSV), end-
diastolic velocity (EDV), and RI. We hypothesize that our envelope
detection algorithm enables vascular parameter imaging with a high
spatial and temporal resolution for trans-fontanelle imaging in neo-
nates, paving the way for future real-time perfusion monitoring.

Methods

Rationale

As the HFR data are obtained with unfocused plane wave ultrasound
in an area with vessels with varying size, diameter and velocity, the
spectrograms obtained have strong variations in characteristics, includ-
ing SNR. Our proposed algorithm intends to adapt to the properties of
each local spectrogram. A valid spectrogram contains both signal and
noise, where the blood velocity signal is found at the lower Doppler fre-
quencies and the noise is found at all frequencies, yet with lower power
density. As both the blood signal and the noise in the spectrograms are
often specklelike, a simple power threshold separation will not work
well. We adopt a max-likelihood classification approach for separating
signal from background (noise), the automatic max-likelihood spectral
envelope detection (AMLED) (Fig. 1). A max-likelihood approach has
been reported to perform well in ultrasound data with noise and speckle
structures [23,24]; however, it has not been applied for spectral enve-
lope detection to our knowledge.
ation algorithm (AMLED). EDV, end-diastolic velocity; IQ, in-phase and quadra-



Figure 2. Data preparation steps. (a) The beamformed B-mode data. (b) Power Doppler data after smoothing and singular value decomposition filtering on the in-
phase and quadrature data. (c) Directional power Doppler. Red indicates dominant flow toward the probe, and blue, away from the probe. (d) Slow-time high-pass fil-
tered average time signal of all pixels, indicating the overall pulsatility (top). The timing of systolic peaks (red dots) and end-diastolic valleys (green dots) are added to
the smoothed curve (bottom).
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Data acquisition

The ultrasound recordings were obtained with a clinical ultra-
sound machine, the Zonare ZS3 (Mindray Innovation Center, San
Jose, CA, USA) with a high-frequency linear probe (L20-5) at a
center frequency fc of 11 MHz. Data were collected and beam-
formed in base-band-demodulated in-phase/quadrature (IQ) format,
each frame having 250 axial and 115 lateral pixels covering an
image width of 30 mm and a depth of 25 mm. During each mea-
surement, a total of 2000 IQ frames were recorded at a frame
rate of 1000 Hz.

Data preparation

Figure 2a is a typical example of the B-mode image. Yet, for all proc-
essing steps described in the following, the original IQ data were
smoothed using a spatiotemporal Gaussian filter with a 3 × 3 × 3
(axial × lateral × temporal) kernel size to reduce noise. Singular value
decomposition (SVD) was then used on these smoothed IQ frames to
remove static tissue signal. A low-rank threshold selection algorithm
was applied to determine the cutoff between tissue and blood flow SVD
ranks [25,26].

A high-quality power Doppler image (Fig. 2b) is calculated by one-
lag autocorrelation of the SVD-filtered IQ data and averaging over all
frames, with the sign of the phase shift used to determine the direction
of flow for each blood pixel, yielding the directional power Doppler
image (Fig. 2c). A threshold at −45 dB was applied mainly to preserve
blood flow pixels; these pixels are used for further spectral Doppler proc-
essing.

By filtering of the original IQ data with a slow-time high-pass filter at
100 Hz and calculating the average time intensity over all pixels, a gen-
eral cerebral blood flow pulsatility signal was derived (Fig. 2d). This
436
allowed us to calculate the heart rate and derive the timing of the sys-
tolic peaks and end-diastolic valleys.

The spectrogram (power spectral density [PSD]) for each blood flow
pixel was obtained by applying a fast Fourier transform (FFT) to the IQ
signal over a slow-time period using a temporal window of 50 frames
and an overlap of 40 frames, resulting in an effective sampling rate Fs of
100 spectra/s (Fig. 3a). The spectrogram represents time on the horizon-
tal axis and Doppler frequency on the vertical axis, with the local bright-
ness value representing signal power within the corresponding
frequency bin.

The regular Doppler equation illustrates the relationship between
each Doppler frequency fD in the spectrogram and the Doppler velocity
(VD):

VD � fD·ct
2fc

�1�
where the ct is1540 m/s and center frequency fc is 11 MHz.

The direction of the dominant velocity is determined by locating the
maximum signal intensity of the spectrogram’s average over time. For
the purpose of imaging the neonatal brain, we assume unidirectional
flow, and only one direction is further analyzed. Baseline shifting was
performed to reduce the effect of wrap-around (Fig. 3b). The unwrapped
PSD I(t,v) with v between 0 and 2vmax was converted into a 40 dB loga-
rithmic scale represented in 256 intensity levels i.

AMLED

As each image pixel will contain a mix of different flow and tissue
velocities, the pixel’s spectrogram represents the distribution of veloci-
ties at that pixel for each time point. Velocity bins above the actually
occurring maximum velocity will contain mainly noise and appear with
low intensity value. The maximum velocity that contains significant



Figure 3. Spectrogram processing. (a) Spectrogram. (b) Unwrapped spectrogram in the positive direction. (c) The area between the purple dashed lines represents the
detected signal band, and the area between the orange dashed lines indicates the noise band. (d) From left to right: histograms, probability density functions (p(i)) and
membership likelihood (P(i)) of (top to bottom) noise N (orange), signal S (purple) and summed noise and signal (blue).
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power above the noise is seen as representing the blood vessel’s central
velocity. To acquire an envelope of the spectrogram, a velocity envelope
point Ve(t) needs to be determined for every time point t. This envelope
point is found at the division point between spectral signal and spectral
noise.

This segmentation is performed by first identifying the spectrogram
rows (velocities) with the highest and lowest average intensity, associ-
ated with pure signal and noise, respectively. Then we identify adjacent
rows, with an average intensity within 20% of this noise minimum
(Fig. 3c, between the orange dashed lines) or signal maximum (Fig. 3c,
between the purple dashed lines). Then, we create histograms Hs(i), Hn(i)
(Fig. 3d, left) of the intensities (i) for all pixels in the signal and noise
rows and initialize the probability density function (PDF) p(i|S), p(i|N)
for both regions (Fig. 3d, middle), as well as prior probabilities p(S) for
signal and p(N) for noise based on the numbers of rows classified as
such. Using Bayes’ rule [27], we calculate class membership probabili-
ties P(S|i) and P(N|i) (Fig. 3d, right) with eqns (2) and (3) for each inten-
sity (i):

P Sji� � � p ijS� � � p S� �=p i� � �2�
P N ji� � � p ijN� � � p N� �=p i� � �3�

We assign additional adjacent rows to the signal and noise regions
based on the row’s average class membership, and then update all PDFs,
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prior probabilities and class membership probabilities. With these final
PDFs and prior probabilities, the envelope position Ve(t) for each time
point t in the spectrogram (time point t indicated by azure line in Fig. 4a)
is determined using a maximum-likelihood decision based on the joint
probability density function, articulated in eqn (4). We expect signal
membership below and noise membership above the envelope. By calcu-
lating the sum of negative log-likelihoods for signal NLLS = −log P(S|i)
below and noise NLLN membership above each possible partitioning
point, the optimal envelope position Ve(t) is identified as the point with
the lowest sum (Fig. 4b):

Ve t� � � argmin Ve� �
�
∑
Ve

0
NLLs t; v� � � ∑

Vmax

Ve

NLLN t; v� �
�

�4�

Furthermore, for the next time point, new prior estimates (p(S), p(N))
are updated based on the Ve of the previous time point (Ve (t − 1)).

Envelope post-processing and parameter extraction

A robust spectral envelope was obtained by excluding time points
with insufficient signal quality. Time points with max spectral power
below 30% of the mean overall power were excluded. For temporary sig-
nal dropouts, the envelope was interpolated. If more than five consecu-
tive time points were excluded, the envelope for these points was
removed from the analysis.



Figure 4. Envelope detection and extrema analysis. (a) Azure line indicates the time point that is investigated. (b) Summed negative log likelihoods of signal below can-
didate point (purple), noise above (orange) and summed line (blue). The best envelope point is found where the summed line is minimal. (c) In red is the detected enve-
lope. (d) The detected envelope with red crosses for peak systolic velocity and red dots for end-diastolic velocity.
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The resulting envelope was low-pass filtered with a cutoff
H = 24*HR/Fs where HR is the heart rate, in beats/second, obtained
from the global pulsatility signal, and the factor 24 was empirically
determined to maintain the general trend of the spectrogram while
removing outliers. The final envelope can be seen in Figure 4c.

The PSV and EDV are identified by detecting peaks and valleys, local
maxima and minima in the envelope signal with a minimum peak dis-
tance of 80% of the distance between peaks in the global pulsatility sig-
nal (Fig. 4d). RI was calculated with the following equation:

RI � PSV � EDV
PSV

�5�

Evaluation of the AMLED algorithm

To evaluate our method and test the robustness of the detected spec-
tral envelopes with a wide range of SNRs, we used the clinical data
obtained in a prospective, observational, feasibility study where we per-
formed transfontanellar clinical PWD and HFR ultrasound in 10 neo-
nates before, during and after surgical treatment of two major
congenital anomalies. Institutional research board approval (Medical
Ethical Committee Erasmus Medical Centre, MEC 2017-145, amendment
feasibility study, February 13, 2019) and signed informed consent were
obtained from both parents before start of measurements. The methods
and results of the clinical ultrasound measurements were previously
published and discussed by Costerus et al. [28]. After a clinical measure-
ment, the probe was held stable and the machine was switched to the
custom HFR mode.

We selected 30 arterial (15 low arterial flow [PSV < 2.5 cm/s], 15
high arterial flow) and 15 venous spectrograms from that study. These
were representative spectrograms having varying velocities and SNRs
and were manually selected from a set of ∼1000 spectrograms generated
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by randomly selecting blood flow pixels in 22 HFR data sets of five neo-
nates. To evaluate the performance of the AMLED algorithm, its results
were compared with those obtained from two other envelope estimation
techniques, the oSNSI of Kathpalia et al. [21] and mean velocity
approach (Vmean) [10]. The comparison was made by comparing the
parameters (EDV, PSV and RI) derived from the envelopes with those
obtained from manual detection. Two independent observers (A.J.K.
and J.G.B.) manually selected peaks and valleys in each spectrogram.
The observers were instructed to select a specific number of peaks (PSV)
and valleys (EDV) based on the pre-determined heart rate and number
of cardiac cycles.

The oSNSI method [21] is summarized as follows. For each time
point, the cumulative power spectrum is calculated from the PSD and
normalized. A signal region, a noise region and the envelope cutoff posi-
tion Ve are identified in this spectrum based on the local slope of the
integrated power spectrum.

The intensity-weighted average velocity of the PSD, Vmean was
calculated as described by Demene et al. [10]. It should be noted
that this mean velocity will always be lower than the Ve of our tech-
nique that searches for maximum velocities. Yet, Vmean would vary
in a similar way as Ve, and a similar RI value can be expected from
its peaks and valleys.

To compare RI values of the HFR mode and the RI found with clinical
PWD, the same pial artery as investigated with clinical PWD was investi-
gated in the HFR mode. The mean RI was used for the comparison with
the RI of the clinical PWD [28].

Lastly, to verify correctness of implementation of all three
methods, we tested AMLED alongside Vmean and oSNSI on simu-
lated HFR ultrasound data of a carotid in silico flow phantom [29]
with known ground-truth velocities, spanning one cardiac cycle,
with the simulation parameters as previously detailed in Han
et al. [30].



Figure 5. Four spectrograms depicting the performance of three different envelope techniques: automatic max-likelihood envelope estimation algorithm (AMLED,
red), optimized signal−noise slope intersection (oSNSI, blue) and mean velocity (Vmean, green), under varying signal-to-noise ratio (SNR) conditions. (a) High SNR sce-
nario, arterial. (b) Low SNR arterial blood flow signal. (c) Lower SNR venous signal. (d) Noisy arterial signal.
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Statistical analysis

Parameter data obtained from manual detection and the envelope
techniques were analyzed using absolute velocity values and are
expressed as the mean with standard deviation. The envelopes of the
spectrogram derived from the simulated carotid flow data, calculated
using the three algorithms, were compared with the ground truth maxi-
mum velocity trace. Estimation errors (mean absolute differences) were
subsequently calculated and compared. Inter-rater agreement of manual
detection between observers was calculated with the intraclass correla-
tion coefficient (ICC). The inter-rater agreement was sufficient (ICC >
0.75) and the PSV, EDV and RI were averaged over the two observers.

Agreement between parameters calculated with the various envelope
detection methods and the manual selection was evaluated with Bland
−Altman plots [31]. The limits of agreement were set to ±1.96 × SD. A
paired-sample t-test was used to compare the mean difference between
envelope techniques and manual detection. The significance level was
set to 0.05. Root mean square errors (RMSE) were calculated as well.
Agreement between RI values of the HFR mode and RI of clinical PWD
was also assessed with Bland−Altman plots [31].

Statistical analysis was performed with MATLAB (MathWorks MAT-
LAB R2022b, Natick, MA, USA).

Results

General algorithm performance

In Figure 5 are four distinct spectrograms, featuring the AMLED
(red), oSNSI (blue) and Vmean (green) techniques, alongside parameter
values in Table 1. In high-SNR scenarios (Fig. 5a), all techniques perform
well, with AMLED giving the highest values and Vmean the lowest, while
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providing a comparable RI. Figure 5b features a lower SNR arterial
blood flow signal, where oSNSI underestimates the envelope, while
Vmean remains the lowest but has a comparable RI. Figure 5c illustrates a
venous signal with lower SNR, where oSNSI and Vmean become chaotic,
identifying points outside the signal region, but AMLED demonstrates
better noise tolerance. Figure 5d features a noisy, low-velocity arterial
signal where manual detection is still possible, but all techniques strug-
gle to identify the correct envelope. Nevertheless, AMLED still tracks the
spectral signal most consistently. Additionally, in Table 1, AMLED has
the lowest standard deviation for EDV and PSV, with the exception of
EDV in Figure 5d.

Manual investigation

The mean absolute difference between the two investigators was
minor for all parameters, with standard errors for PSV, EDV and RI of
0.004 cm/s, 0.002 cm/s and 0.001, respectively. The results are illus-
trated in Figure 6. ICC was 1.00 for PSV and EDV and 0.88 for RI. The
mean of all parameters selected by the two observers was calculated and
used as ground truth for further comparison of envelope detections.

Comparison with other envelope detection algorithms

The max-likelihood envelope detection algorithm, the oSNSI method
and Vmean were compared with the results from manual tracking.
Figure 7 illustrates the agreement between the envelope tracking meth-
ods and manual tracking. Note that for comparison between Vmean and
manual tracking (of Vmax) only the Bland−Altman plot of RI holds rele-
vance; for EDV and PSV, a considerable difference is expected between
Vmean and Vmax; these plots are included for completeness only. With
oSNSI, a slight underestimation of both EDV and PSV is observed,



Table 1
Parameter values of example spectrograms of Figure 5

Manual oSNSI Vmean AMLED

Arterial 5a
EDV (cm/s) −0.69 (0.06) −0.54 (0.05) −0.36 (0.09) −0.72 (0.01)
PSV (cm/s) −1.94 (0.06) −1.74 (0.11) −1.30 (0.07) −1.96 (0.07)
Resistivity index 0.64 0.69 0.72 0.63

Arterial 5b
EDV (cm/s) 2.43 (0.08) 1.53 (0.37) 1.07 (0.27) 2.11 (0.21)
PSV (cm/s) 4.1 (0.12) 2.85 (0.32) 2.25 (0.46) 3.82 (0.23)
Resistivity index 0.40 0.46 0.52 0.45

Venous 5c
EDV (cm/s) −0.53 (0.06) −0.36 (0.06) −0.30 (0.07) −0.42 (0.04)
PSV (cm/s) −0.74 (0.06) −0.83 (0.26) −1.16 (0.21) −0.67 (0.04)
Resistivity index 0.28 0.57 0.75 0.37

Arterial 5d
EDV (cm/s) −0.89 (0.09) −0.52 (0.09) −0.51 (0.07) −0.65 (0.23)
PSV (cm/s) −1.39 (0.08) −1.70 (0.45) −1.47 (0.38) −1.25 (0.09)
Resistivity index 0.36 0.70 0.65 0.48

EDV and PSV values are expressed as the mean (standard deviation).
AMLED, automatic max-likelihood envelope estimation algorithm; EDV, end-
diastolic velocity; oSNSI, optimized signal noise slope intersection; PSV, peak
systolic velocity; Vmean, mean velocity.
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consistent with the examples provided in Figure 5. As seen in Table 2,
AMLED has the lowest mean difference and RMSE compared with man-
ual tracking.

Calculation times per envelope trace were 0.33 s for oSNSI, 0.08 for
Vmean and 0.13 for AMLED on a regular desktop PC. To create parameter
maps more quickly, these calculation times could be considerably
improved by optimizing code or using parallel computing.

Clinical example of monitoring during surgery

In total, 69 HFR measurements of 10 neonates were performed and
analyzed. The RI of one pial artery, calculated in the clinical low-frame-
rate PWD, was compared with the RI as measured in the same pial artery
in the HFR measurement. Overall, the RIs of 47 of 69 measurements
could be compared. The selected artery in 15 measurements had higher
flow velocities beyond the limits measurable with our HFR ultrasound
(>10 cm/s, PRF = 1000 Hz). This flow velocity could be measured by
adjusting the PRF for the clinical PWD; however, with the fixed frame
rate of the HFR ultrasound of 1000 Hz and center frequency of 11 MHz,
the Doppler trace was aliased. In seven measurements, the selected
artery in the LFR measurement could not be found in the HFR measure-
ment, and thus, these were excluded. The RI was found to be in good
agreement between the two measurements, as illustrated by the Bland
Figure 6. Bland−Altman plots for the manual parameter selection of the two observe
ers. Red points indicate low arterial flow, green points indicate high arterial flow and blu

EDV, end-diastolic velocity; LOA, limits of agreement; PSV, peak-systolic velocity;
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−Altman plot (Fig. 8) with a mean difference of −0.07 and a low RMSE
of 0.1.

After application of the AMLED algorithm, EDV, PSV and RI maps of
each patient were generated at different time points during surgery,
highlighting arteries with high flow velocities and high RIs, possibly
indicating arterial structures, where the veins exhibit lower velocities
and RIs. In one patient given as an example here (Fig. 9), the impact of
the clinical use of norepinephrine infusion on brain perfusion was
observed. The infusion caused an increase in both PSV and EDV and a
decrease in RI, which later returned to its initial value or even increased.

Simulated data

Figure 10 illustrates the simulated spectrogram with the ground
truth maximum velocity trace and the envelopes calculated by
AMLED, oSNSI and Vmean. The estimation errors were 15.0%, 15.1%
and 25.7%, respectively, confirming correct behavior on idealized
data.

Discussion

In this article, we have described an automatic spectral envelope
estimation algorithm for HFR Doppler ultrasound. We found that
rs. The y-axis is observer 1 − observer 2, and the x-axis is the mean of the observ-
e points indicate venous flow.
RI, resistivity index.



Figure 7. Bland−Altman plots for all envelope methods compared with manual selection. The y-axis is manual selection − envelope method, and the x-axis is the mean
of manual and envelope detection. Note that comparison between Vmean and manual tracking is not relevant for EDV and PSV. AMLED, automatic max-likelihood enve-
lope estimation algorithm; EDV, end-diastolic velocity; oSNSI, optimized signal noise slope intersection; PSV, peak-systolic velocity; RI, resistivity index; Vmean, mean
velocity.
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simultaneous quantification and visualization of cortical cerebral
blood flow during high-risk neonatal surgery is feasible with HFR
ultrasound. The results obtained using this envelope technique were
found to be similar to measurements obtained from the same artery
using conventional clinical pulsed wave Doppler, with a mean differ-
ence of −0.07.

In comparison of the envelope techniques with manual tracking, the
AMLED exhibited the smallest mean difference and the lowest RMSE for
Table 2
Overview of ultrasound parameter mean differenc
error envelope techniques compared with manual t

oSNSI

Mean LOA RMSE Mean

EDV (cm/s) 0.64 1.05 0.83 0.8
PSV (cm/s) 0.68 1.82 1.14 1.1
Resistivity index −0.18 0.31 0.24 −0.2

AMLED, automatic max-likelihood envelope estim
LOA, limits of agreement; oSNSI, optimized signa
velocity; Vmean, mean velocity.
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all parameters. Consequently, the AMLED method outperformed both
the oSNSI method and Vmean.

Envelope detection algorithm

Our envelope detection method (AMLED) exhibited robust perfor-
mance across a wide range of high- and low-quality spectrograms,
encompassing both arterial and venous flow. It should be noted that we
e, limits of agreement and root mean square
racking

Vmean AMLED

LOA RMSE Mean LOA RMSE

9 1.23 1.08 0.27 0.73 0.46
4 2.18 1.58 0.24 0.94 0.53
2 0.28 0.27 −0.09 0.25 0.15

ation algorithm; EDV, end-diastolic velocity;
l noise slope intersection; PSV, peak systolic



Figure 8. Bland−Altman plot of the RI compared between 47 clinical LFR and
HFR measurements in the same artery in 10 neonates. HFR, high frame rate;
LFR, low frame rate; LOA, limits of agreement; RI, resistivity index.
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did not apply any speckle reduction or noise filtering to the spectrogram
data. Our AMLED method proved to give reliable results without such
filtering, which might alter the spectrogram envelope. The oSNSI
method exhibited an underestimation of PSV and EDV and was more
sensitive to noise, even though Kathpalia et al. [21] reported robust esti-
mations for oSNSI with even lower SNR. The likely explanation for this
seemingly contradictory finding is that they evaluated their method
using simulations, flow phantoms, and clinically obtained spectrograms
Figure 9. Parameter maps of parasagittal plane of neonate during four different pha
diastolic velocity; MABP, mean arterial blood pressure; PSV, peak-systolic velocity; RI
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from major human arteries, all of which involved very high maximum
velocities (≤100 cm/s) and, consequently, spectra with less influence of
inherent “speckle.” Our data contain many low-velocity vessels where
the speckle influence is large.

We also compared our algorithm with Vmean used by Demene et al.
[10] to create RI maps for HFR Doppler ultrasound. As described in the
Methods section, Vmean will underestimate peak velocities, and our
results indicated that Vmean led to underestimation of PSV and EDV but
also to overestimation of RI. Although it was expected that this method
might provide RI values comparable to those of AMLED, in practice, in
spectrograms with poor SNR, it did not perform well.

It is important to note that if a spectrogram is aliased, neither AMLED
nor any other method will accurately capture the envelope. In the cur-
rent mode, the HFR was machine-limited to 1000 frames/s. Theoreti-
cally, a pulse repetition frequency up to 30 kHz is possible with a depth
range of 25 mm. In our case, we were unable to increase the PRF beyond
the machine’s limitations. Using a higher frame rate would allow for
capturing a broader range of velocities without aliasing. For our specific
focus on small periventricular arteries and veins, which exhibit rela-
tively low velocities, a frame rate of 1000 Hz proved sufficient. A more
elaborate pre-processing or unwrapping may also be instrumental. Addi-
tionally, the algorithm can be extended to acquire envelopes for both
the dominant flow direction and the opposite direction. For our clinical
application, this was not essential, but it could be beneficial in other sce-
narios.

HFR parameter map

Our automatic envelope detection algorithm enabled us to generate
HFR parameter maps of EDV, PSV and RI of the neonatal brain during
ses of esophagus atresia repair surgery with norepinephrine infusion. EDV, end-
, resistivity index.



Figure 10. Simulated spectrogram with the ground truth maximum velocity
trace in yellow and the envelopes calculated by AMLED, oSNSI and Vmean.
AMLED, automatic max-likelihood envelope estimation algorithm; oSNSI, opti-
mized signal noise slope intersection; Vmean, mean velocity.
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high-risk non-cardiac surgery. Vital parameters during surgery provide
poor approximations of brain perfusion in neonates [6]. In one case
where incidental norepinephrine infusion was started for clinical use,
we observed an overall increase in PSV and EDV, with a more significant
effect in EDV, resulting in a decrease in RI. Interestingly, fewer vessels
were observed in the measurements after the noradrenalin injection,
which might indicate cerebral vessel vasoconstriction [32]. These
changes can be explained by the inotropic effects of norepinephrine,
which increase peripheral vascular resistance, resulting in less flow in
smaller vessels, possibly leading to fewer observed vessels [33]. These
findings may have implications for understanding the effects of nor-
adrenalin on cerebral vasculature during surgery. This incidental finding
emphasizes the potential of HFR ultrasound to monitor drug effects on
brain perfusion.
Clinical implications and future directions

A future improvement would be to provide the HFR analysis in
real time, which would further facilitate selection of relevant views
and vessels. The fully automated analysis would eventually facilitate
hands-off long-duration ultrasound monitoring with, for example,
small wearable probes. Future research should expand knowledge
on the effect of fluctuation of Doppler parameters during surgery on
later observed brain injury, and if the Doppler parameters, next to
other vital parameters, can improve peri-operative management on
cerebral perfusion.
Conclusion

In this study, we developed a novel automatic envelope detection
algorithm for providing quantitative parameter maps of blood flow
based on HFR pulsed wave Doppler signals. Our method had low root
mean square errors in estimating EDV, PSV and RI, even with varying-
quality spectrograms with different flow conditions. Our results suggest
that HFR ultrasound has the potential to serve as an additional tool to
monitor cerebral perfusion, for example, during major high-risk neona-
tal surgery.
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